Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090503    DOI: 10.1088/1674-1056/abea83
GENERAL Prev   Next  

Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model

Wei Zhang(张伟)1,2,†,‡, Ming-Yuan Li(李明远)1,2,†, Qi-Liang Wu(吴启亮)3,§, and An Xi(袭安)4
1 Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, Beijing 100124, China;
2 College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China;
3 School of Artificial Intelligence, Tiangong University, Tianjin 300387, China;
4 The Fifth Electronic Research Institute of MIIT, Guangzhou 510610, China
Abstract  High-voltage transmission line possesses a typical suspended cable structure that produces ice in harsh weather. Moreover, transversely galloping will be excited due to the irregular structure resulting from the alternation of lift force and drag force. In this paper, the nonlinear dynamics and internal resonance of an iced cable under wind excitation are investigated. Considering the excitation caused by pulsed wind and the movement of the support, the nonlinear governing equations of motion of the iced cable are established using a three-degree-of-freedom model based on Hamilton's principle. By the Galerkin method, the partial differential equations are then discretized into ordinary differential equations. The method of multiple scales is then used to obtain the averaged equations of the iced cable, and the principal parametric resonance-1/2 subharmonic resonance and the 2:1 internal resonance are considered. The numerical simulations are performed to investigate the dynamic response of the iced cable. It is found that there exist periodic, multi-periodic, and chaotic motions of the iced cable subjected to wind excitation.
Keywords:  iced cable      wind excitation      galloping      chaotic motion  
Received:  23 November 2020      Revised:  25 January 2021      Accepted manuscript online:  01 March 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11290152, 11427801, and 11902220) and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, China (PHRIHLB).
Corresponding Authors:  Wei Zhang, Qi-Liang Wu     E-mail:  sandyzhang0@yahoo.com;qiliang_wu@hotmail.com

Cite this article: 

Wei Zhang(张伟), Ming-Yuan Li(李明远), Qi-Liang Wu(吴启亮), and An Xi(袭安) Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model 2021 Chin. Phys. B 30 090503

[1] Irvine H M and Caughey T K 1974 P. Roy. Soc. A - Math. Phys. 341 299
[2] Starossek U 1994 Struct. Eng. Int. 4 171
[3] Rega G 2004 Appl. Mech. Rev. 57 443
[4] Rega G 2004 Appl. Mech. Rev. 57 479
[5] Ibrahim R A 2004 Appl. Mech. Rev. 57 515
[6] Perkins N C 1992 Int. J. Nonlinear Mech. 27 233
[7] Benedettini F, Rega G and Alaggio R 1995 J. Sound Vib. 182 775
[8] Gattulli V, Martinelli L, Perotti F and Vestroni F 2004 Comput. Method Appl. M 193 69
[9] Luongo A, Zulli D and Piccardo G 2009 Comput. Struct. 87 1003
[10] Luongo A, Zulli D and Piccardo G 2008 J. Sound Vib. 315 375
[11] Luongo A, Paolone A and Piccardo G 1998 Meccanica 33 229
[12] Kim W J and Perkins N C 2002 J. Fluid Struct. 16 229
[13] Srinil N, Rega G and Chucheepsakul S 2003 Nonlinear Dyn. 33 129
[14] Zhao Y and Wang L 2006 J. Sound Vib. 294 1073
[15] Casciati F and Ubertini F 2008 Nonlinear Dyn. 53 89
[16] Abdel-Rohman M and Spencer B F 2004 Nonlinear Dyn. 37 341
[17] Zheng G J, Ko M and Ni Y Q 2002 Nonlinear Dyn. 30 55
[18] Chang W K, Pilipchuk V and Ibrahim R A 1997 Nonlinear Dyn. 14 377
[19] Ouni M H E and Kahla N B 2012 J. Civ. Eng. Manag. 18 557
[20] Zhao Y, Sun C, Wang Z and Wang L 2014 Shock Vib. 2014 795708
[21] Zhao Y, Sun C, Wang Z and Wang L 2014 Nonlinear Dyn. 78 1017
[22] Srinil N, Rega G and Chucheepsakul S 2007 Nonlinear Dyn. 48 231
[23] Srinil N and Rega G 2007 Nonlinear Dyn. 48 253
[24] Nayfeh A H, Arafat H N, Chin C M and Lacarbonara W 2002 Modal Analysis 8 337
[25] Lacarbonara W and Rega G 2003 Int. J. Nonlinear Mech. 38 873
[26] Kamel M M and Hamed Y S 2002 Acta Mech. 214 315
[27] Rega G, Alaggio R and Benedettini F 1997 Nonlinear Dyn. 14 89
[28] Zhang W and Tang Y 2002 Int. J. Nonlinear Mech. 37 505
[29] Wu Q L, Zhang W and Dowell E H 2018 Int. J. Nonlinear Mech. 102 25
[30] Wu Q L and Qi G Y 2019 Phys. Lett. A 383 1555
[31] Wu Q L and Qi G Y 2020 Appl. Math. Model. 83 674
[32] Abe A 2010 Nonlinear Anal. - Real. 11 2594
[33] Huang K, Feng Q and Yin Y 2014 Acta Mech. Solida Sin. 27 467
[34] Kang H J, Zhao Y Y and Zhu H P 2015 J. Vib. Control 21 1487
[35] Kang H J, Guo T D, Zhao Y Y, Fu W B and Wang L H 2017 Eur. J. Mech. A - Solid 62 94
[36] Wei M H, Lin K, Jin L and Zou D J 2016 Int. J. Mech. Sci. 110 78
[37] Wu Q L and Qi G Y 2020 Eur. J. Mech. A - Solid 82 104012
[38] Jing H, He X and Wang Z 2018 J. Fluid Struct. 82 121
[39] Górski P, Pospíšil S, Tatara M and Trush A 2019 J. Wind Eng. Ind. Aerod. 191 297
[40] Zhao Y L, Xu Z D and Wang C 2019 J. Sound Vib. 443 732
[41] Chang Y, Zhao L and Ge Y 2019 J. Fluid Struct. 88 257
[42] Li Y, Shen W and Zhu H 2019 Eng. Struct. 200 109693
[43] Huang K, Feng Q and Qu B 2017 Nonlinear Dyn. 87 2765
[44] Ahmad J, Cheng S and Ghrib F 2018 J. Sound Vib. 417 132
[45] Ishihara T and Oka S 2018 J. Wind Eng. Ind. Aerod. 177 60
[46] Akkaya T and Horssen W T V 2019 Nonlinear Dyn. 95 783
[47] Javanbakht M, Cheng S and Ghrib F 2019 J. Sound Vib. 442 249
[48] Li M. Li M. Zhong Y and Luo N 2019 J. Sound Vib. 439 156
[49] Guo T, Kang H, Wang L and Zhao Y 2017 Nonlinear Dyn. 90 1941
[50] Mansour A, Mekki O B, Montassar S and Rega G 2018 J. Sound Vib. 413 332
[51] Zhao Y, Peng J, Zhao Y and Chen L 2017 Nonlinear Dyn. 89 2815
[52] Zhao Y, Huang C, Chen L and Peng J 2018 J. Sound Vib. 416 279
[53] Wu Q L and Qi G Y 2021 Appl. Math. Model. 90 1120
[54] Wu Q L, Yao M H, Li M Y, Cao D X and Bai B 2021 Appl. Math. Model. 93 75
[1] Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation
Hailong Zhang(张海龙), Enrong Wang(王恩荣), Fuhong Min(闵富红), Ning Zhang(张宁). Chin. Phys. B, 2016, 25(3): 030503.
[2] Chaotic dynamics and its analysis of Hindmarsh–Rose neurons by Shil'nikov approach
Wei Wei (魏伟), Zuo Min (左敏). Chin. Phys. B, 2015, 24(8): 080501.
No Suggested Reading articles found!