Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060504    DOI: 10.1088/1674-1056/24/6/060504
GENERAL Prev   Next  

A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection

Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. A circular zone counting (CZC) method is proposed in this paper, by combining the Duffing oscillator's phase trajectory feature and numerical calculation for quickly and accurately identifying state transition and determining the critical value, to realize a high-efficiency weak signal detection. Detailed model analysis and method construction of the CZC method are introduced. Numerical experiments into the reliability of the proposed CZC method compared with the maximum Lyapunov exponent (MLE) method are carried out. The CZC method is demonstrated to have better detecting ability than the MLE method, and furthermore it is simpler and clearer in calculation to extend to engineering application.
Keywords:  identifying state transition      determining critical value      Duffing oscillator      circular zone counting method      maximum Lyapunov exponent method  
Received:  23 November 2014      Revised:  13 January 2015      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047 and 61071025).
Corresponding Authors:  Xu Xue-Mei     E-mail:  xuxuemei999@126.com
About author:  05.45.-a

Cite this article: 

Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰) A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection 2015 Chin. Phys. B 24 060504

[1] Dai D Y and He Q B 2012 Meas. Sci. Technol. 23 115001
[2] Rudnick P 1953 J. Appl. Phys. 24 2
[3] Wang G Y 1999 IEEE Trans. Indus. Electron. 46 440
[4] Yu T, Zhang L and Luo M K 2013 Phys. Scr. 88 045008
[5] Shi S H, Yuan Y and Wang H Q 2011 Chin. Phys. Lett. 28 040502
[6] Xiang X Q and Shi B C 2010 Chaos 20 013104
[7] Shi H C, Fan S C, Xing W W and Sun J H 2014 Mech. Sys. Sig. Process. 50 535
[8] Zhao W L, Zhao J X, Huang Z Q and Meng Q H 2012 Proc. Eng. 29 1796
[9] Delmar P and Ian H 1992 Phys. Rev. Lett. 69 2607
[10] Xu X M, Dai P, Yang B C and Yin L Z 2013 Acta Phys. Sin. 62 204303 (in Chinese)
[11] Li Q D, Chen S and Zhou P 2011 Chin. Phys. B 20 010502
[12] Berntson G M 1994 Ann. Bot. 73 281
[13] Thomas P 2000 Phys. Rev. E 61 1337
[14] Liu W D, Ren K F and Gouesbet G 2003 Chin. Phys. 12 1366
[15] Paolo B and Giovanni C 1987 Phys. Rev. A 36 962
[16] Shaw S W and Holmes P J 1983 J. Sound. Vib. 90 1
[17] Wiggins S 1987 Phys. Lett. A 124 3
[18] Moskalenko O I, Hramov A E and Koronovskii A A 2011 Eur. Phys. J. B 72 1451
[19] Li Y and Yang B J 2004 The Detecting Theory of Chaotic Oscillators (Shanghai: The Electronics Industry Publishing House) pp. 64-68
[20] Fan J, Zhao W L and Wang W Q 2013 Acta Phys. Sin. 62 180502 (in Chinese)
[21] Thomas L C 2005 Chaos 15 013901
[22] Jayawardena A W, Xu P C and Li W K 2008 Chaos 18 023115
[23] Yong X, Gu R C, Zhang H Q, Xu W and Duan J Q 2011 Phys. Rev. E 83 056215
[1] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[2] Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator
Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红). Chin. Phys. B, 2018, 27(3): 030702.
[3] Regular nonlinear response of the driven Duffing oscillator to chaotic time series
Yuan Ye(袁野), Li Yue(李月), Danilo P. Mandic, and Yang Bao-Jun(杨宝俊). Chin. Phys. B, 2009, 18(3): 958-968.
[4] Extraction of periodic signals in chaotic secure communication using Duffing oscillators
Wang Yun-Cai(王云才), Zhao Qing-Chun(赵清春), and Wang An-Bang(王安帮). Chin. Phys. B, 2008, 17(7): 2373-2376.
[5] Analysis of a kind of Duffing oscillator system used to detect weak signals
Li Yue(李月), Yang Bao-Jun(杨宝俊), Yuan Ye(袁野), and Liu Xiao-Hua(刘晓华). Chin. Phys. B, 2007, 16(4): 1072-1076.
[6] Chaotic synchronization via linear controller
Chen Feng-Xiang(陈凤祥) and Zhang Wei-Dong(张卫东). Chin. Phys. B, 2007, 16(4): 937-941.
No Suggested Reading articles found!