Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014206    DOI: 10.1088/1674-1056/24/1/014206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A quartz-enhanced photoacoustic spectroscopy sensor for measurement of water vapor concentration in the air

Gong Ping (龚萍), Xie Liang (谢亮), Qi Xiao-Qiong (漆晓琼), Wang Rui (王瑞), Wang Hui (王辉), Chang Ming-Chao (常明超), Yang Hui-Xia (杨慧霞), Sun Fei (孙菲), Li Guan-Peng (李冠鹏)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  A compact and highly linear quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for the measurement of water vapor concentration in the air is demonstrated. A cost-effective quartz tuning fork (QTF) is used as the sharp transducer to convert light energy into an electrical signal based on the piezoelectric effect, thereby removing the need for a photodetector. The short optical path featured by the proposed sensing system leads to a decreased size. Furthermore, a pair of microresonators is applied in the absorbance detection module (ADM) for QTF signal enhancement. Compared with the system without microresonators, the detected QTF signal is increased to approximately 7-fold. Using this optimized QEPAS sensor with the proper modulation frequency and depth, we measure the water vapor concentration in the air at atmospheric pressure and room temperature. The experimental result shows that the sensor has a high sensitivity of 1.058 parts-per-million.
Keywords:  distributed feedback laser diode      photoacoustic spectroscopy      wavelength modulation      second harmonic detection  
Received:  12 May 2014      Revised:  07 August 2014      Accepted manuscript online: 
PACS:  42.60.-v (Laser optical systems: design and operation)  
  78.20.Pa (Photoacoustic effects)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  02.30.Px (Abstract harmonic analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61107070, 61127018, and 61377071).
Corresponding Authors:  Xie Liang     E-mail:  xiel@semi.ac.cn

Cite this article: 

Gong Ping (龚萍), Xie Liang (谢亮), Qi Xiao-Qiong (漆晓琼), Wang Rui (王瑞), Wang Hui (王辉), Chang Ming-Chao (常明超), Yang Hui-Xia (杨慧霞), Sun Fei (孙菲), Li Guan-Peng (李冠鹏) A quartz-enhanced photoacoustic spectroscopy sensor for measurement of water vapor concentration in the air 2015 Chin. Phys. B 24 014206

[1] Zhang L, Gu F X, Lou J Y, Yin X F and Tong L M 2008 Opt. Express 16 13349
[2] Higdon N S, Browell E V, Ponsardin P, Grossmann B E, Butler C F, Chyba T H, Mayo M N, Allen R J, Heuser A W and Grant W B 1994 Appl. Opt. 33 6422
[3] Mathew J, Semenova Y and Farrell G 2013 Opt. Express 21 6313
[4] Gu B, Yin M, Zhang A P, Qian J and He S 2011 Opt. Express 19 4140
[5] Bhuyan M and Bhuyan R 1995 Industrial Automation and Control, 1995 IEEE/IAS International Conference on (Cat. No. 95TH8005), January 5-7, 1995 Hyderabad, India, p. 7
[6] Silver J A and Stanton A C 1987 Appl. Opt. 26 2558
[7] Chatterjee A, Munshi S, Dutta M and Rakshit A 2000 Instrumentation and Measurement Technology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, May 1-4, 2000 Baltimore, USA, p. 313
[8] Thoma P, Colla J and Stewart R 1979 Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, September, 1979 p. 321
[9] Bridgeman R C and Kraft P L 1969 Industrial Electronics and Control Instrumentation, IEEE Transactions on, July, 1969 p. 13
[10] Fisher P D, Lillevik S L and Jones A L 1981 Instrumentation and Measurement, IEEE Transactions on, March, 1981 p. 57
[11] Svensson T, Lewander M and Svanberg S 2010 Opt. Express 18 16460
[12] Yang B, He G Q, Liu P J and Qi Z M 2011 Photonics and Optoelectronics (SOPO), 2011 Symposium on, May 16-18, 2011 Wuhan, China, p. 1
[13] Cao Y, Jin W, Ho H, Qi L and Yang Y 2012 Appl. Phys. B 109 359
[14] Kosterev A, Bakhirkin Y A, Curl R and Tittel F 2002 Opt. Lett. 27 1902
[15] Jahjah M, Vicet A and Rouillard Y 2012 Appl. Phys. B 106 483
[16] Dong L, Kosterev A A, Thomazy D and Tittel F K 2010 Appl. Phys. B 100 627
[17] Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L and Morozov I V 2005 Rev. Sci. Instrum. 76 043105
[18] Che L, Ding Y J, Peng Z M and Li X H 2012 Chin. Phys. B 21 127803
[19] Fuwa K and Valle B L 1963 Anal. Chem. 35 942
[20] Wysocki G, Kosterev A A and Tittel F K 2006 Appl. Phys. B 85 301
[21] Lei D, Spagnolo V, Lewicki and Tittel F K 2011 Opt. Express 19 24037
[22] Kosterev A A, Buerki P R, Dong L, Reed M, Day T and Tittel F K 2010 Appl. Phys. B 100 173
[23] Harvard Smithsonian Center for Astrophysics 2004 The HITRAN molecular spectroscopic database
[1] Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm
Chun-Yan Sun(孙春艳), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Jing-Jing Wang(王静静), Gang Cheng(程刚), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2020, 29(1): 010704.
[2] Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell
Xing Tian(田兴), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Kun Liu(刘锟), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2019, 28(6): 063301.
[3] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[4] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[5] Wavelength modulation spectroscopy for measurements of gas parameters in combustion field
Dong-Sheng Qu(屈东胜), Yan-Ji Hong(洪延姬), Guang-Yu Wang(王广宇), Hu Pan(潘虎). Chin. Phys. B, 2017, 26(6): 064207.
[6] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[7] Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-Perot tunable filter
Yun-Long Li(李运龙), Bing-Chu Yang(杨兵初), Xue-Mei Xu(许雪梅). Chin. Phys. B, 2016, 25(2): 024208.
[8] Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy
Qin-Bin Huang(黄秦斌), Xue-Mei Xu(许雪梅), Chen-Jing Li(李晨静), Yi-Peng Ding(丁一鹏), Can Cao(曹粲), Lin-Zi Yin(尹林子), Jia-Feng Ding(丁家峰). Chin. Phys. B, 2016, 25(11): 114202.
[9] Sensitive absorption measurements of hydrogen sulfide at 1.578 μm using wavelength modulation spectroscopy
Xia Hua (夏滑), Dong Feng-Zhong (董凤忠), Wu Bian (吴边), Zhang Zhi-Rong (张志荣), Pang Tao (庞涛), Sun Peng-Shuai (孙鹏帅), Cui Xiao-Juan (崔小娟), Han Luo (韩荦), Wang Yu (王煜). Chin. Phys. B, 2015, 24(3): 034204.
[10] Calibration-free wavelength modulation spectroscopy for gas concentration measurements under low-absorbance conditions
Che Lu (车璐), Ding Yan-Jun (丁艳军), Peng Zhi-Min (彭志敏), Li Xiao-Hang (李晓航). Chin. Phys. B, 2012, 21(12): 127803.
[11] Comparison of two kinds of active layers for high-power narrow-stripe distributed feedback laser diodes
Fu Sheng-Hui(付生辉), Song Guo-Feng(宋国峰), and Chen Liang-Hui(陈良惠). Chin. Phys. B, 2007, 16(3): 817-820.
[12] Absorption measurements for highly sensitive diode laser of CO2 near 1.3μm at room temperature
Shao Jie (邵杰), Zhang Wei-Jun (张为俊), Gao Xiao-Ming (高晓明), Ning Li-Xin (宁利新), Yuan Yi-Qian (袁怿谦). Chin. Phys. B, 2005, 14(3): 482-486.
[13] PRECISE MEASUREMENT OF DENSITY-DEPENDENT SHIFT BY WAVELENGTH MODULATION REFLECTION SPECTROSCOPY
Xiao Lian-tuan (肖连团), Zhao Jian-ming (赵建明), Li Chang-yong (李昌勇), Jia Suo-tang (贾锁堂), Zhou Guo-sheng (周国生). Chin. Phys. B, 2001, 10(8): 716-719.
No Suggested Reading articles found!