Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014211    DOI: 10.1088/1674-1056/24/1/014211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Backward Raman amplification in plasmas with chirped wideband pump and seed pulses

Wu Zhao-Hui (吴朝辉)a b c, Wei Xiao-Feng (魏晓峰)b, Zuo Yan-Lei (左言磊)b, Liu Lan-Qin (刘兰琴)b, Zhang Zhi-Meng (张智猛)b, Li Min (李敏)b, Zhou Yu-Liang (周煜梁)b, Su Jing-Qin (粟敬钦)a
a Department of Electric-optics, Nanjing University of Science and Technology, Nanjing 210094, China;
b Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
c Science and Technology on Plasma Physics Laboratory, Mianyang 621900, China
Abstract  

Chirped wideband pump and seed pulses are usually considered for backward Raman amplification (BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency.

Keywords:  ultrashort pulse generation      Raman lasers      laser-plasma interactions      plasma simulation  
Received:  25 May 2014      Revised:  08 August 2014      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.55.Zz (Random lasers)  
  52.38.-r (Laser-plasma interactions)  
  52.65.-y (Plasma simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11305157) and the Development Foundation of China Academy of Engineering Physics Laboratory (CAEPL) (Grant No. 2013A0401019).

Corresponding Authors:  Su Jing-Qin     E-mail:  sujingqin@hotmail.com

Cite this article: 

Wu Zhao-Hui (吴朝辉), Wei Xiao-Feng (魏晓峰), Zuo Yan-Lei (左言磊), Liu Lan-Qin (刘兰琴), Zhang Zhi-Meng (张智猛), Li Min (李敏), Zhou Yu-Liang (周煜梁), Su Jing-Qin (粟敬钦) Backward Raman amplification in plasmas with chirped wideband pump and seed pulses 2015 Chin. Phys. B 24 014211

[1] Malkin V M, Shvets G and Fisch N J 1999 Phys. Rev. Lett. 82 4448
[2] Trines R M G M, Fiúza F, Bingham R, Fonseca R A, Silva L O, Cairns R A and Norreys P A 2011 Nat. Phys. 7 87
[3] Trines R M G M, Fiúza F, Bingham R, Fonseca R A, Silva L O, Cairns. R A and Norreys P A 2011 Phys. Rev. Lett. 107 105002
[4] Mourou G A, Fisch N J, Malkin V M, Sergeev E A, Tajima T and Le G B 2012 Opt. Commun. 285 720
[5] Ping Y, Geltner I, Fisch N J, Shvets G and Suckewer S 2000 Phys. Rev. E 62 4532
[6] Ping Y, Geltner I, Fisch N J and Suckewer S 2002 Phys. Rev. E 66 046401
[7] Ping Y, Cheng W F, Suckewer S, Clark D S and Fisch N J 2004 Phys. Rev. Lett. 92 175007
[8] Cheng W, Avitzour Y, Ping Y and Suckewer S 2005 Phys. Rev. Lett. 94 045003
[9] Ren J, Cheng W F, Li S L and Suckwer S 2007 Nat. Phys. 3 732
[10] Pai C H, Lin M W, Ha L C, Tsou S T, Chu H H, Lin J Y and Chen S Y 2008 Phys. Rev. Lett. 101 065005
[11] Ping Y, Kirwood R K, Wang T L, Clark D S, Wilks S C, Meezan N and Berger R L 2009 Phys. Plasmas 16 123113
[12] Wang H Y and Huang Z Q 2005 Chin. Phys. 14 2560
[13] Balakin A A, Fisch N J, Fraiman G M, Fraiman V M and Toroker Z 2011 Phys. Plasmas 18 102311
[14] Malkin V M, Shvets G and Fisch N J 2000 Phys. Rev. Lett. 84 1208
[15] Ersfeld B and Jaroszynski D A 2005 Phys. Rev. Lett. 95 165002
[16] Yampolsky N A and Fisch N J 2011 Phys. Plasmas 18 056711
[17] Toroker Z, Malkin V M and Fisch N J 2012 Phys. Rev. Lett. 109 085003
[18] Yampolsky N A, Fisch N J, Malkin V M, Valeo E J, Lindberg R, Wurtele J, Ren J, Li S, Morozov A and Suckewer S 2008 Phys. Plasmas 15 113104
[19] Liu S L, Chen D N, Liu W and Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese)
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[3] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[4] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[5] Properties of long light filaments in natural environment
Shi-You Chen(陈式有), Hao Teng(滕浩), Xin Lu(鲁欣), Zong-Wei Shen(沈忠伟), Shuang Qin(秦爽), Wen-Shou Wei(魏文寿), Rong-Yi Chen(陈荣毅), Li-Ming Chen(陈黎明), Yu-Tong Li(李玉同), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 085203.
[6] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[7] High power terahertz pulses generated in intense laser-plasma interactions
Li Yu-Tong (李玉同), Wang Wei-Min (王伟民), Li Chun (李春), Sheng Zheng-Ming (盛政明). Chin. Phys. B, 2012, 21(9): 095203.
[8] Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge
Shang Wan-Li(尚万里), Zhang Yuan-Tao(张远涛), Wang De-Zhen(王德真), Sang Chao-Feng(桑超峰), Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Liu Shen-Ye(刘慎业), and M.~G. Kong. Chin. Phys. B, 2011, 20(1): 015201.
[9] Monte Carlo simulation of electron beam air plasma characteristics
Deng Yong-Feng(邓永锋), Han Xian-Wei(韩先伟), and Tan Chang(谭畅). Chin. Phys. B, 2009, 18(9): 3870-3876.
[10] Simulation of radio-frequency atmospheric pressure glow discharge in $\gamma$ mode
Shang Wan-Li(尚万里), Wang De-Zhen(王德真), and Michael G. Kong. Chin. Phys. B, 2007, 16(2): 485-492.
[11] Modelling of passively Q-switched lasers with intracavity Raman conversion
Su Fu-Fang(苏富芳), Zhang Xing-Yu(张行愚), Wang Qing-Pu(王青圃), Chang Jun(常军), Jia Peng(贾鹏), Li Shu-Tao(李述涛), Zhang Xiao-Lei(张晓磊), and Cong Zhen-Hua(丛振华). Chin. Phys. B, 2007, 16(11): 3370-3376.
[12] A numerical simulation of the backward Raman amplifying in plasma
Wang Hong-Yu (王虹宇), Huang Zu-Qia (黄祖洽). Chin. Phys. B, 2005, 14(12): 2560-2564.
[13] Influence of ion species ratio on grid-enhanced plasma source ion implantation
Wang Jiu-Li (王久丽), Zhang Gu-Ling (张谷令), Liu Yuan-Fu (刘元富), Wang You-Nian (王友年), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2004, 13(1): 65-70.
[14] Dephasing time of a positron accelerated by a laser pulse
Du Chun-Guang (杜春光), Li Shi-Qun (李师群). Chin. Phys. B, 2002, 11(4): 375-378.
[15] Stimulated Raman backscattering from an ultrashort laser interacting with underdense plasmas
Tang Yu-Hui (汤宇晖), Han Shen-Sheng (韩申生), Zhang Chang-Xue (张长学), Wu Yan-Qing (吴衍青), Cheng Jing (程静), Zhong Fang-Chuan (钟方川), Zhu Yu-Zhe (朱喻哲), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2002, 11(1): 50-53.
No Suggested Reading articles found!