Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 120504    DOI: 10.1088/1674-1056/23/12/120504
GENERAL Prev   Next  

Impulsive stabilization of a class of nonlinear system with bounded gain error

Ma Tie-Dong (马铁东)a b, Zhao Fei-Ya (赵飞亚)b
a Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China;
b College of Automation, Chongqing University, Chongqing 400044, China
Abstract  Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches, the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.
Keywords:  bounded gain error      impulsive control      exponential stability      Chua's circuit  
Received:  02 May 2014      Revised:  23 June 2014      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB215202), the National Natural Science Foundation of China (Grant Nos. 61104080 and 61134001), and the Fundamental Research Funds for the Central Universities (Grant No. CDJZR13 175501).
Corresponding Authors:  Ma Tie-Dong     E-mail:  mtd1118@gmail.com

Cite this article: 

Ma Tie-Dong (马铁东), Zhao Fei-Ya (赵飞亚) Impulsive stabilization of a class of nonlinear system with bounded gain error 2014 Chin. Phys. B 23 120504

[27] Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3742
[1] Yang T 2001 Impulsive Control Theory (Berlin: Springer)
[28] Ma T D, Zhang H G and Wang Z L 2007 Acta Phys. Sin. 56 3796 (in Chinese)
[2] Yang T and Chua L O 1997 IEEE Trans. Circ. Sys. I: Fundamental Theory and Applications 44 976
[29] Cai S M, Zhou P P and Liu Z R 2014 Nonlinear Dyn. 76 1677
[30] Su C H and Yang M H 2014 J. Grey System 26 59
[3] Itoh M, Yang T and Chua L O 2001 Int. J. Bifur. Chaos 11 551
[31] Li C J, Li C D, Liao X F and Huang T W 2011 Neurocomputing 74 1541
[4] Li C D, Liao X F and Yang X F 2005 Chaos 15 043103
[32] Sun G and Zhang Y 2014 Neurocomputing 131 323
[33] Kao Y G, Wang C H and Zhang L 2013 Neural Process. Lett. 38 321
[5] Zhong Q S, Bao J F, Yu Y B and Liao X F 2008 Chin. Phys. Lett. 25 2812
[6] Yang J, Sun Q Y and Yang D S 2012 Acta Phys. Sin. 61 200511 (in Chinese)
[34] Zhang Q H, Shao Y F and Liu J Z 2013 Math. Methods Appl. Sci. 36 773
[35] Lakshmikantham V, Bainov D D and Simeonov P S 1989 Theory of Impulsive Differential Equations (Singapore: World Scientific)
[7] Wang Y W, Guan Z H and Xiao J W 2004 Chaos 14 199
[8] Li N, Yuan H Q, Sun H Y and Zhang Q L 2013 Nonlinear Dyn. 73 1187
[36] Cao J D, Li H X and Ho D W C 2005 Chaos, Solitons and Frictals 23 1285
[9] Zhong Q S, Yu Y B and Yu J B 2010 Chin. Phys. Lett. 27 020501
[37] Liao X X, Chen G R, Xu B J and Shen Y 2005 Int. J. Bifur. Chaos 15 2227
[10] Song Q K and Cao J D 2007 IEEE Trans. Syst., Man, and Cyb., Part B 37 733
[11] Zhang Y and Sun J T 2005 Phys. Lett. A 348 44
[12] Xu D Y and Yang Z C 2005 J. Math. Anal. Appl. 305 107
[13] Guan Z H and Chen G R 1999 Neural Networks 12 273
[1] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[2] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[3] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[4] Cluster synchronization of community network with distributed time delays via impulsive control
Hui Leng(冷卉), Zhao-Yan Wu(吴召艳). Chin. Phys. B, 2016, 25(11): 110501.
[5] Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control
Liu Dan-Feng (刘丹峰), Wu Zhao-Yan (吴召艳), Ye Qing-Ling (叶青伶). Chin. Phys. B, 2014, 23(4): 040504.
[6] Synchronization of impulsively coupled complex networks
Sun Wen(孙文), Chen Zhong(陈忠), and Chen Shi-Hua(陈士华) . Chin. Phys. B, 2012, 21(5): 050509.
[7] Impulsive synchronization of a nonlinear coupled complex network with a delay node
Sun Wen (孙文), Chen Zhong(陈忠), and Kang Yu-Hong(康玉红) . Chin. Phys. B, 2012, 21(1): 010504.
[8] Impulsive control of chaotic systems and its applications in synchronization
Wu Bo(吴波), Liu Yang(刘洋), and Lu Jian-Quan(卢剑权). Chin. Phys. B, 2011, 20(5): 050508.
[9] Global exponential stability of reaction–diffusion neural networks with discrete and distributed time-varying delays
Zhang Wei-Yuan(张为元) and Li Jun-Min(李俊民). Chin. Phys. B, 2011, 20(3): 030701.
[10] Stochastic impulsive control for the stabilization of Lorenz system
Wang Liang(王亮), Zhao Rui(赵锐), Xu Wei(徐伟), and Zhang Ying(张莹) vgluept . Chin. Phys. B, 2011, 20(2): 020506.
[11] Modified impulsive synchronization of fractional order hyperchaotic systems
Fu Jie(浮洁), Yu Miao(余淼), and Ma Tie-Dong(马铁东) . Chin. Phys. B, 2011, 20(12): 120508.
[12] Global exponential stability of mixed discrete and distributively delayed cellular neural network
Yao Hong-Xing(姚洪兴) and Zhou Jia-Yan(周佳燕). Chin. Phys. B, 2011, 20(1): 010701.
[13] An improved impulsive control approach to robust lag synchronization between two different chaotic systems
Ma Tie-Dong(马铁东), Fu Jie(浮洁), and Sun Yue(孙跃). Chin. Phys. B, 2010, 19(9): 090502.
[14] Impulsive synchronization and control of directed transport in chaotic ratchets
Guo Liu-Xiao(过榴晓), Hu Man-Feng(胡满峰), and Xu Zhen-Yuan(徐振源). Chin. Phys. B, 2010, 19(2): 020512.
[15] Impulsive control of stochastic system under the sense of stochastic asymptotical stability
Niu Yu-Jun(牛玉俊) and Ma Ge(马戈). Chin. Phys. B, 2010, 19(11): 110511.
No Suggested Reading articles found!