Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110201    DOI: 10.1088/1674-1056/23/11/110201
GENERAL   Next  

Lie symmetry theorem of fractional nonholonomic systems

Sun Yi (孙毅)a, Chen Ben-Yong (陈本永)a, Fu Jing-Li (傅景礼)b
a Faculty of Mechanical-Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China;
b Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is established, and the fractional Lagrange equations are obtained by virtue of the d'Alembert-Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal transformations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.
Keywords:  Lie symmetry      conserved quantity      fractional nonholonomic systems  
Received:  11 March 2014      Revised:  11 July 2014      Accepted manuscript online: 
PACS:  02.20.-a (Group theory)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  45.10.Hj (Perturbation and fractional calculus methods)  
  02.30.Xx (Calculus of variations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272287 and 11472247) and the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRT13097).
Corresponding Authors:  Fu Jing-Li     E-mail:  sqfujingli@163.com

Cite this article: 

Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼) Lie symmetry theorem of fractional nonholonomic systems 2014 Chin. Phys. B 23 110201

[1] Mei F X 1999 Applications of Lei Group and Lie Algebra to Constrained Mechanics Systems (Beijing: Science Press) (in Chinese)
[2] Camci U and Kucukakca Y 2007 Phys. Rev. D 76 084023
[3] Belmonte-Beitia J, Pérez-García V M and Vekslerchik V 2007 Phys. Rev. Lett. 98 064102
[4] Mei F X 2000 Acta Phys. Sin. 49 1207 (in Chinese)
[5] Zhang R C, Chen X W and Mei F X 2000 Chin. Phys. 9 561
[6] Mei F X and Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Institute of Technology Press) (in Chinese)
[7] Mei F X and Shang M 2000 Acta Phys. Sin. 49 1901 (in Chinese)
[8] Zhang H B 2001 Acta Phys. Sin. 50 1837 (in Chinese)
[9] Zhang R C, Chen X W and Mei F X 2001 Chin. Phys. 10 12
[10] Zhang Y and Xue Y 2001 Acta Phys. Sin. 50 816 (in Chinese)
[11] Mei F X 2001 Chin. Phys. 10 177
[12] Zhao L, Fu J L and Chen B Y 2011 Chin. Phys. B 20 040201
[13] Zhang Y 2011 Chin. Phys. B 20 034502
[14] Fu J L and Chen B Y 2009 Mod. Phys. Lett. B 23 1315
[15] Fu J L and Chen L Q 2004 Phys. Lett. A 331 138
[16] Zhang R C, Chen X W and Mei F X 2000 Chin. Phys. 9 801
[17] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer)
[18] Chen X W, Zhao Y H and Li Y M 2009 Chin. Phys. B 18 3139
[19] Fu J L, Chen B Y, Fu H, Zhao G L, Liu R W and Zhu Z Y 2011 Sci. Chin. Phys. Mech. Astron. 54 288
[20] Dorodnitsyn V, Kozlov R and Winternitz P 2000 J. Math. Phys. 41 480
[21] Fu J L, Chen L Q and Bai J H 2003 Chin. Phys. 12 695
[22] Martins N and Torres D F M 2010 Appl. Math. Lett. 23 1432
[23] Fu J L, Li X W, Li C R, Zhao W J and Chen B Y 2010 Sci. Chin. Phys. Mech. Astron. 53 1699
[24] Fu J L, Chen L Q and Chen B Y 2010 Sci. Chin. Phys. Mech. Astron. 53 545
[25] Fu J L, Chen B Y and Chen L Q 2009 Phys. Lett. A 373 409
[26] Zhou S, Fu H and Fu J L 2011 Sci. Chin. Phys. Mech. Astron. 54 1847
[27] Zhang S H, Chen B Y and Fu J L 2012 Chin. Phys. B 21 100202
[28] Atanacković T M, Konjik S, Pilipović S and Simić S 2009 Nonlinear Anal. 71 1504
[29] Frederico G S F and Torres D F M 2007 J. Math. Anal. Appl. 334 834
[30] Rabei E M, Nawafleh K I, Hijjawi R S, Muslih S I and Baleanu D 2007 J. Math. Anal. Appl. 327 891
[31] Stanislavsky A A 2006 Eur. Phys. J. B 49 93
[32] Zhang Y 2012 Chin. Phys. B 21 084502
[33] Baleanu D, Muslih S I and Rabei E M 2008 Nonlinear Dyn. 53 67
[34] Zhou S, Fu J L and Liu Y S 2010 Chin. Phys. B 19 120301
[35] Agrawal O P 2002 J. Math. Anal. Appl. 272 368
[36] Riewe F 1996 Phys. Rev. E 53 1890
[37] Riewe F 1997 Phys. Rev. E 55 3581
[38] Agrawal O P 2007 J. Phys. A: Math. Theor. 40 6287
[39] Cresson J 2007 J. Math. Phys. 48 033504
[40] Jefferson G F and Carminati J 2014 Comput. Phys. Commun. 185 430
[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[3] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[4] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[5] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[6] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[7] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[8] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong (陈爱永), Zhang Li-Na (章丽娜), Wen Shuang-Quan (温双全). Chin. Phys. B, 2013, 22(4): 040510.
[9] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[10] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[11] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[12] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[13] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[14] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[15] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2012, 21(6): 064501.
No Suggested Reading articles found!