Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088109    DOI: 10.1088/1674-1056/23/8/088109
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Phase field crystal study of the crystallization modes within the two-phase region

Yang Tao (杨涛), Zhang Jing (张静), Long Jian (龙建), Long Qing-Hua (龙清华), Chen Zheng (陈铮)
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (NPU), Xi'an 710072, China
Abstract  Using the phase field crystal approach, the crystallization process within the liquid-solid coexistence region is investigated for a square lattice on an atomic scale. Two competing growth modes, i.e., the diffusion-controlled growth through long-range atomic migration in liquid and the diffusionless growth through local atom rearrangement, which give rise to two completely different crystallization behaviors, are compared. In the diffusion-controlled regime, the interface migrates in a layerwise manner, leading to a gradual change of crystal morphology from truncated square to four-fold symmetric dendrite with the increase of driving force. For the diffusionless growth mode, a single crystal with no significant density change occupies the whole system at a faster rate while exhibiting a small growth anisotropy. The competition between these two modes is also discussed from the key input of the phase field crystal model: the correlation function.
Keywords:  phase field crystal      diffusion-controlled      diffusionless      dendrite  
Received:  13 December 2013      Revised:  18 January 2014      Accepted manuscript online: 
PACS:  81.10.Fq (Growth from melts; zone melting and refining)  
  64.70.dg (Crystallization of specific substances)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51174168 and 51274167) and the Foundation for Fundamental Research of Northwestern Polytechnical University, China (Grant No. JC20120222).
Corresponding Authors:  Yang Tao     E-mail:  420929211@163.com

Cite this article: 

Yang Tao (杨涛), Zhang Jing (张静), Long Jian (龙建), Long Qing-Hua (龙清华), Chen Zheng (陈铮) Phase field crystal study of the crystallization modes within the two-phase region 2014 Chin. Phys. B 23 088109

[1] Gránásy L, Pusztai T, Börzsönyi T, Warren J A and Douglas J F 2004 Nat. Mater. 3 645
[2] Taguchi K, Mayaji H, Izumi K, Hoshino A, Miyahoto Y and Kokawa R 2001 Polymer 42 7443
[3] Beers K L, Douglas J F, Amis E J and Karim A 2003 Langmuir 19 3935
[4] Xu H J, Matkar R and Kyu T 2005 Phys. Rev. E 72 0110804
[5] Wild R and Harrowell P 2001 J. Chem. Phys. 114 9059
[6] Russel W B, Chaikin P M, Zhu J, Meyer W V and Rogers R 1997 Langmuir 13 3871
[7] Tegze G, Gránásy L, Tóth G I, Douglas J F and Tamas Pusztai 2011 Soft Matter 7 1789
[8] Tegze G, Tóth G I and Gránásy L 2011 Phys. Rev. Lett. 106 195502
[9] Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258
[10] Hillert M 1961 Acta Metall. 9 525
[11] Wang Y Z and Li J 2010 Acta Mater. 58 1212
[12] Boettinger W J, Warren J A, Beckermann C and Karma A 2002 Ann. Rev. Mater. Res. 32 163
[13] Gao Y, Liu H, Zhou N, Xu Z, Zhu Y M, Nie J F and Wang Y 2012 Acta Mater. 60 4819
[14] Chen L Q 2002 Ann. Rev. Mater. Res. 32 113
[15] Zhou N, Shen C, Wagner M F X, Eggeler G, Mills M J and Wang Y 2010 Acta Mater. 58 6685
[16] Lu Y, Wang C, Gao Y, Shi R, Liu X and Wang Y 2012 Phys. Rev. Lett. 109 086101
[17] Gao Y, Zhou N, Yang F, Cui Y, Kovarik L, Hatcher N, Noebe R, Mill M J and Wang Y 2012 Acta Mater. 60 1514
[18] Liu H, Gao Y, Liu J Z, Zhu Y M, Wang Y and Nie J F 2013 Acta Mater. 61 453
[19] Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rev. Lett. 88 245701
[20] Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T and Chen Z 2013 Acta Phys. Sin. 62 218101 (in Chinese)
[21] Gao Y J, Luo Z R, Huang C G, Lu Q H and Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese)
[22] Yang T, Chen Z and Dong W P 2011 Acta Metall. Sin. 47 1301
[23] Yang T, Chen Z, Zhang J, Dong W P and Wu L 2012 Chin. Phys. Lett. 29 078103
[24] Tang S, Wang Z J, Guo Y L and Wang J C 2012 Acta Mater. 60 5501
[25] Tang S, Backofen R, Wang J C, Zhou Y H, Voigt A and Yu Y M 2011 J. Cryst. Growth 334 146
[26] Chen C, Chen Z, Zhang J, Yang T and Du X J 2012 Chin. Phys. B 21 118103
[27] Greenwood M, Provatas N and Rottler J 2010 Phys. Rev. Lett. 105 045702
[28] Greenwood M, Rottler J and Provatas N 2011 Phys. Rev. E 83 031601
[29] Guo C, Wang Z J, Wang J C, Guo Y L and Tang S 2013 Acta Phys. Sin. 62 108104 (in Chinese)
[30] Aaronson H I 2002 Metall. Mater. Trans. A 33 2285
[31] Humadi H, Hoyt J J and Provatas N 2013 Phys. Rev. E 87 022404
[32] Cherno A A 1974 J. Cryst. Growth 24/25 11
[33] Yokoyama E and Kuroda T 1990 Phys. Rev. A 41 2038
[1] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[2] Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties
Ruyu Yang(杨汝雨), Zhongyi Zhang(张中义), Linlin Xu(徐林林), Shuang Li(李爽), Yang Jiao(焦扬), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(7): 076102.
[3] Forming solid electrolyte interphase in situ in an ionic conductingLi1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) basedseparator for Li-ion batteries
Jiao-Yang Wu(吴娇杨), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Hong Li(李泓), Xiao-Xiong Xu(许晓雄), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(7): 078204.
[4] Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model
Tao Yang(杨 涛), Zheng Chen(陈铮), Jing Zhang(张静), Yongxin Wang(王永新), Yanli Lu(卢艳丽). Chin. Phys. B, 2016, 25(3): 038103.
[5] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[6] Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation
Yang Su-Dong (杨苏东), Chen Lin (陈琳). Chin. Phys. B, 2015, 24(11): 118104.
[7] Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
Chen Ming-Wen (陈明文), Wang Bao (王宝), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(11): 116805.
[8] Settling velocity of equiaxed dendrites in a tube
Zhou Peng (周鹏), Wang Meng (王猛), Lin Xin (林鑫), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2013, 22(1): 018101.
[9] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
Chen Cheng (陈成), Chen Zheng (陈铮), Zhang Jing (张静), Yang Tao (杨涛), Du Xiu-Juan (杜秀娟 ). Chin. Phys. B, 2012, 21(11): 118103.
[10] Phase--field model of isothermal solidification with multiple grains growth
Feng Li(冯力), Wang Zhi-Ping(王智平), Zhu Chang-Sheng(朱昌盛), and Lu Yang(路阳). Chin. Phys. B, 2009, 18(5): 1985-1990.
[11] Solute distribution in KNbO3 melt-solution and its effect on dendrite growth during rapid solidification
Pan Xiu-Hong(潘秀红), Jin Wei-Qing(金蔚青), Liu Yan(刘岩), and Ai Fei(艾飞). Chin. Phys. B, 2009, 18(2): 699-703.
[12] Phase field simulation of the columnar dendritic growth and microsegregation in a binary alloy
Li Jun-Jie(李俊杰), Wang Jin-Cheng(王锦程), and Yang Gen-Cang(杨根仓). Chin. Phys. B, 2008, 17(9): 3516-3522.
[13] Synthesis and characterization of axially periodic Zn2SnO4 dendritic nanostructures
Shen Jun(沈俊), Ge Bing-Hui(葛炳辉), Chu Wei-Guo(褚卫国), Luo Shu-Dong(罗述东), Zhang Zeng-Xing(张增星), Liu Dong-Fang(刘东方), Liu Li-Feng(刘利峰), Ma Wen-Jun(马文君), Ren Yan(任彦), Xiang Yan-Juan(向彦娟), Wang Chao-Ying(王超英), Wang Gang(王刚), and Zhou Wei-Ya(周维亚) . Chin. Phys. B, 2008, 17(6): 2184-2190.
[14] Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process
Li Qiang (李强), Guo Qiao-Yi (郭巧懿), Li Rong-De (李荣德). Chin. Phys. B, 2006, 15(4): 778-791.
[15] Modelling the crystal growth in highly undercooled alloy melts by non-isothermal phase-field method
Li Mei-E (李梅娥), Yang Gen-Cang (杨根仓), Zhou Yao-He (周尧和). Chin. Phys. B, 2005, 14(4): 838-843.
No Suggested Reading articles found!