GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Prev
Next
|
|
|
Three-dimensional spiral structure of tropical cyclone under four-force balance |
Liu Shi-Kuo (刘式适), Fu Zun-Tao (付遵涛), Liu Shi-Da (刘式达) |
Department of Atmospheric and Oceanic Sciences and Laboratory for Climate and Ocean-Atmosphere Studies, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract The steady axis-symmetrical atmosphere dynamical equations are used for describing spiral structure of tropical cyclones under four-force (pressure gradient force, Coriolis force, centrifugal force, and friction force) balance, and the dynamical systems of three-dimensional (3D) velocity field are introduced. The qualitative analysis of the dynamical system shows that there are down 3D spiral structures in eye of tropical cyclone and tropical cyclone is 3D counterclockwise up spiral structure. These results are consistent with the observed tropical cyclone on the weather map.
|
Received: 26 September 2013
Revised: 12 November 2013
Accepted manuscript online:
|
PACS:
|
92.60.-e
|
(Properties and dynamics of the atmosphere; meteorology)
|
|
92.60.Ox
|
(Tropical meteorology)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Granted No. 40975027). |
Corresponding Authors:
Fu Zun-Tao
E-mail: fuzt@pku.edu.cn
|
Cite this article:
Liu Shi-Kuo (刘式适), Fu Zun-Tao (付遵涛), Liu Shi-Da (刘式达) Three-dimensional spiral structure of tropical cyclone under four-force balance 2014 Chin. Phys. B 23 069201
|
[1] |
Elsberry R L (ed.) 1987 A Global View of Tropical Cyclone, Naval Postgraduate School, Monterey, CA
|
[2] |
Newton C W 1967 Adv. Geophys. 12 257
|
[3] |
Powell M D 1982 Mon. Wea. Rev. 110 1912
|
[4] |
Weisman M L and Klemp J B 1982 Mon. Wea. Rev. 110 504
|
[5] |
Wallace J M and Hobbs P V 2006 Atmospheric Science: an Introductory Survey (New York: Academic Press)
|
[6] |
Pedlosky J 1987 Geophysical Fluid Dynamics, 2nd edn. (New York: Springer)
|
[7] |
Holton J R 1979 An Introduction to Dynamic Meteorology, 2nd edn. (New York: Academic Press)
|
[8] |
Houghton J T 1989 The Physics of Atmospheres, 2nd edn. (Cambridge: Cambridge University Press)
|
[9] |
Hirsch M W, Smale S and Devaney R 2004 Differential Equation, Dynamical System and an Introduction to Chaos (Dan Diego: Academic Press)
|
[10] |
Guckenheimer J and Homes P 1983 Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields (New York: Springer)
|
[11] |
Mao J Y and Wang Z Z 2008 Chin. Phys. Lett. 25 1506
|
[12] |
Li X F and Cui X P 2011 Chin. Phys. B 20 109201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|