Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 126601    DOI: 10.1088/1674-1056/21/12/126601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Modeling effective viscosity reduction behaviour of solid suspensions

Wei En-Bo (魏恩泊)a, Ji Yan-Ju (纪艳菊)a b, Zhang Jun (张军)c
a Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
c The Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
Abstract  Under a simple shearing flow, the effective viscosity of solid suspensions can be reduced by controlling the inclusion particle size or the number of inclusion particles in a unit volume. Based on the Stokes equation, the transformation field method is used to model the reduction behaviour of effective viscosity of solid suspensions theoretically by enlarging the particle size at a given high concentration of particles. With a lot of samples of random cubic particles in a unit cell, our statistical results show that at the same higher concentration, the effective viscosity of solid suspensions can be reduced by increasing the particle size or reducing the number of inclusion particles in a unit volume. This work discloses the viscosity reduction mechanism of increasing particle size, which is observed experimentally.
Keywords:  effective viscosity      solid suspensions      transformation field method  
Received:  20 March 2012      Revised:  08 May 2012      Accepted manuscript online: 
PACS:  66.20.-d (Viscosity of liquids; diffusive momentum transport)  
  66.20.Cy (Theory and modeling of viscosity and rheological properties, including computer simulation)  
  64.70.D- (Solid-liquid transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 40876094 and 10374026).
Corresponding Authors:  Wei En-Bo     E-mail:  ebwei@qdio.ac.cn

Cite this article: 

Wei En-Bo (魏恩泊), Ji Yan-Ju (纪艳菊), Zhang Jun (张军) Modeling effective viscosity reduction behaviour of solid suspensions 2012 Chin. Phys. B 21 126601

[1] Einstein A 1906 Annalen der Physik 19 289
[2] Batchelor G K 1970 J. Fluid Mech. 41 545
[3] Nunan K C and Keller J B 1984 J. Fluid Mech. 142 269
[4] Sherwood J D 2006 Chem. Eng. Sci. 61 6727
[5] Chen J Y and Fan Z 2002 Mater. Sci. Technol. 18 237
[6] Petrie C J S 2006 J. Non-Newtonian Fluid Mech. 137 15
[7] Fan Z and Chen J Y 2002 Mater. Sci. Technol. 18 243
[8] Tao R and Xu X 2005 Energy & Fuels 20 2046
[9] Feng R F, Zhang X Z and Wu Z Z 1994 Chin. Phys. 3 332
[10] Li J W, Ma Y G and Ma G L 2009 Chin. Phys. B 18 4786
[11] Tao R and Huang K 2011 Phys. Rev. E 81 011905
[12] Tao R 2011 Journal of Intelligent Material Systems and Structures 22 1667
[13] Eshelby J D 1957 Prod. R. Soc. A 241 376
[14] Nemat-Nasser S and Taya M 1984 J. Fluid Mech. 142 268
[15] Gu G Q and Tao R 1988 Phys. Rev. B 37 8612
[16] Gu G Q and Tao R B 1988 Acta Phys. Sin. 37 582 (in Chinese)
[17] Gu G Q, Hui P M, Xu C and Woo W C 2001 Solid State Commun. 120 483
[18] Wei E B, Poon Y M, Shin F G and Gu G Q 2006 Phys. Rev. B 74 014107
[19] Gu G Q and Tao R 1989 Sci. Chin. A 32 1186
[20] Gu G Q and Yu K W 2000 Appl. Math. Mech. 21 275
[21] Taylor G I 1931 Proc. R. Soc. A 138 41
[1] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[2] Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study
Qing-Yin Zhang(张庆印), Peng Xie(谢鹏), Xin Wang(王欣), Xue-Wen Yu(于学文), Zhi-Qiang Shi(时志强), Shi-Huai Zhao(赵世怀). Chin. Phys. B, 2016, 25(6): 066102.
[3] Elastic, dielectric, and piezoelectric characterization of 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal by Brillouin scattering
Fang Shao-Xi (方绍熙), Tang Dong-Yun (汤冬云), Chen Zhao-Ming (陈昭明), Zhang Hua (张华), Liu Yu-Long (刘玉龙). Chin. Phys. B, 2015, 24(2): 027802.
[4] A fiber-array probe technique for measuring the viscosity of a substance under shock compression
Feng Li-Peng (冯立鹏), Liu Fu-Sheng (刘福生), Ma Xiao-Juan (马小娟), Zhao Bei-Jing (赵北京), Zhang Ning-Chao (张宁超), Wang Wen-Peng (王文鹏), Hao Bin-Bin (郝斌斌). Chin. Phys. B, 2013, 22(10): 108301.
[5] Viscosity of aluminum under shock-loading conditions
Ma Xiao-Juan (马小娟), Liu Fu-Sheng (刘福生), Zhang Ming-Jian (张明建), Sun Yan-Yun (孙燕云). Chin. Phys. B, 2011, 20(6): 068301.
[6] Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study
Zhang Ran(张然), Peng Zeng-Hui(彭增辉), Liu Yong-Gang(刘永刚), Zheng Zhi-Gang(郑致刚), and Xuan Li(宣丽). Chin. Phys. B, 2009, 18(10): 4380-4384.
[7] Direct measurement of the surface dynamics of supercooled liquid-glycerol by optical scanning a film
Zhang Fang(张芳), Zhang Guo-Feng(张国峰), Dong Shuang-Li(董双丽), Sun Jian-Hu(孙建虎), Chen Rui-Yun(陈瑞云), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2009, 18(9): 3918-3921.
[8] Growth and collapse of laser-induced bubbles in glycerol--water mixtures
Liu Xiu-Mei(刘秀梅), He Jie(贺杰), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武). Chin. Phys. B, 2008, 17(7): 2574-2579.
[9] A comparative study of the structure and crystallization of bulk metallic amorphous rod Pr60Ni30Al10 and melt-spun metallic amorphous ribbon Al87Ni10Pr3
Meng Qing-Ge (孟庆格), Li Jian-Guo (李建国), Zhou Jian-Kun (周建坤). Chin. Phys. B, 2006, 15(7): 1549-1557.
No Suggested Reading articles found!