Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064203    DOI: 10.1088/1674-1056/21/6/064203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical transfer function analysis of circular-pupil wavefront coding systems with separable phase masks

Zhao Ting-Yu(赵廷玉)a)†, Liu Qin-Xiao(刘钦晓)b), and Yu Fei-Hong(余飞鸿)b)
a. Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
b. Optical Engineering Department, Zhejiang University, Hangzhou 310027, China
Abstract  This paper proposes a simple method to achieve the optical transfer function of a circular pupil wavefront coding system with a separable phase mask in Cartesian coordinates. Based on the stationary phase method, the optical transfer function of the circular pupil system can be easily obtained from the optical transfer function of the rectangular pupil system by modifying the cut-off frequency and the on-axial modulation transfer function. Finally, a system with a cubic phase mask is used as an example to illustrate the way to achieve the optical transfer function of the circular pupil system from the rectangular pupil system.
Keywords:  wavefront coding      circular pupil      separable phase mask      stationary phase method  
Received:  10 January 2012      Revised:  06 February 2012      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Kq (Fourier optics)  
  02.30.Mv (Approximations and expansions)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. Y1110455), the Scientific Research Fund of Educational Department of Zhejiang Province, China (Grant No. Y200909691), and the Science Foundation of Zhejiang Sci-Tech University (Grant No. 0913849-Y).
Corresponding Authors:  Zhao Ting-Yu     E-mail:  zhaotingyu@zstu.edu.cn

Cite this article: 

Zhao Ting-Yu(赵廷玉), Liu Qin-Xiao(刘钦晓), and Yu Fei-Hong(余飞鸿) Optical transfer function analysis of circular-pupil wavefront coding systems with separable phase masks 2012 Chin. Phys. B 21 064203

[1] Dowski E R and Cathey W T 1995 Appl. Opt. 34 1859
[2] Zhang R F, Wang T, Pan C, Wang L L and Zhuang S L 2011 Acta Phys. Sin. 60 114204 (in Chinese)
[3] Zhao T Y, Ye Z, Zhang W Z and Yu F H 2008 Acta Phys. Sin. 57 200 (in Chinese)
[4] Li F and Rao C H 2012 Acta Phys. Sin. 61 029502 (in Chinese)
[5] Li B, Tan Z W and Zhang X X 2012 Acta Phys. Sin. 61 014203 (in Chinese)
[6] Ojeda-Castaneda J 2005 Opt. Lett. 30 1647
[7] Zhou F, Ye R, Li G W, Zhang H T and Wang D S 2009 J. Opt. Soc. Am. A 26 1889
[8] Zhao H and Li Y C 2010 Opt. Lett. 35 2630
[9] Zhao H and Li Y C 2010 Opt. Lett. 35 267
[10] Yang Q G, Liu L R and Sun J F 2007 Opt. Commun. 272 56
[11] Caron N and Sheng Y L 2007 Proceedings of the International Society for Optical Engineering (SPIE) November 5, 2007, Wuhan, China p. 68321G
[12] Sauceda A 2004 Opt. Lett. 29 560
[13] Muyo G and Harvey A R 2005 Opt. Lett. 30 2715
[14] Zhao T Y and Yu F H 2012 Opt. Express 20 2408
[15] Bagheri S, Silveria P E and Farias D P 2008 J. Opt. Am. A 25 1051
[16] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p. 128
[17] Goodman J W 2005 Introduction to Fourier Optics 3rd edn. (Englewood: Roberts and Company) p. 137
[1] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
No Suggested Reading articles found!