Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 010309    DOI: 10.1088/1674-1056/21/1/010309
RAPID COMMUNICATION Prev   Next  

Spontaneous symmetry breaking of a Bose–Fermi mixture in a two-dimensional double-well potential

Wang Yuan-Sheng(王元生), Yan Pei-Gen(颜培根), Li Bin(李彬), and Liu Xue-Shen(刘学深)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  We study the spontaneous symmetry breaking of a superfluid Bose-Fermi mixture in a two-dimensional double-well potential. The mixture is described by a set of coupled Gross-Pitaevskii equations. The symmetry breaking phenomenon is demonstrated in the two-dimensional double-well potential in the mixture. The results are summarized in the phase diagrams of the mixture particle numbers, which are divided into symmetric and asymmetric regions by the asymmetry ratios. The dynamical pictures of the spontaneous symmetry breaking induced by a gradual transformation of the single-well potential into a double-well one are also illustrated. The properties of the quantum degenerate mixture are explored using the realistic parameters for a 40K-87Rb system.
Keywords:  spontaneous symmetry breaking      Bose-Fermi mixture      double-well potential  
Received:  02 August 2011      Revised:  24 August 2011      Accepted manuscript online: 
PACS:  03.75.Ss (Degenerate Fermi gases)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974068 and 11174108).

Cite this article: 

Wang Yuan-Sheng(王元生), Yan Pei-Gen(颜培根), Li Bin(李彬), and Liu Xue-Shen(刘学深) Spontaneous symmetry breaking of a Bose–Fermi mixture in a two-dimensional double-well potential 2012 Chin. Phys. B 21 010309

[1] Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A and Inguscio M 2001 Science 294 1320
[2] Caballero-Benítez S F, Ostrovskaya E A, Gulácsí M and Kivshar Y S 2009 J. Phys. B 42 215308
[3] Goldwin J, Papp S B, DeMarco B and Jin D S 2002 Phys. Rev. A 65 021402(R)
[4] Adhikari S K and Salasnich L 2008 Phys. Rev. A 78 043616
[5] Hadzibabic Z, Stan C A, Dieckmann K, Gupta S, Zwierlein M W, Görlitz A and Ketterle W 2002 Phys. Rev. Lett. 88 160401
[6] Roati G, Riboli F, Modugno G and Inguscio M 2002 Phys. Rev. Lett. 89 150403
[7] Wang P J, Chen H X, Xiong D Z, Yu X D, Gao F and Zhang J 2008 Acta Phys. Sin. 57 4840 (in Chinese)
[8] Hao Y J 2011 Chin. Phys. Lett. 28 010302
[9] Chen H J, Li G Q and Xue J K 2011 Acta Phys. Sin. 60 040305 (in Chinese)
[10] Meng S Y, Wu W, Chen X H, Zhang J and Fu L B 2011 Chin. Phys. B 20 080309
[11] Mayteevarunyoo T, Malomed B A and Dong G 2008 Phys. Rev. A 78 053601
[12] Nambu Y 2009 Rev. Mod. Phys. 81 1015
[13] Gubeskys A and Malomed B A 2007 Phys. Rev. A 76 043623
[14] Matuszewski M, Malomed B A and Trippenbach M 2007 Phys. Rev. A 75 063621
[15] Trippenbach M, Infeld E, Gocalek J, Matuszewski M, Oberthaler M and Malomed B A 2008 Phys. Rev. A 78 013603
[16] Mayteevarunyoo T and Malomed B A 2009 J. Opt. A: Pure Appl. Opt. 11 094015
[17] Dror N and Malomed B A 2011 Physica D 240 526
[18] Xiong B, Gong J, Pu H, Bao W and Li B 2009 Phys. Rev. A 79 013626
[19] Wang C, Kevrekidis P G, Whitaker N and Malomed B A 2008 Physica D 237 2922
[20] Adhikari S K, Lu H and Pu H 2009 Phys. Rev. A 80 063607
[21] Sakaguchi H and Malomed B A 2011 Phys. Rev. E 83 036608
[22] Adhikari S K, Malomed B A, Salasnich L and Toigo F 2010 Phys. Rev. A 81 053630
[23] Salasnich L, Ancilotto F and Toigo F 2010 Laser Phys. Lett. 7 78
[24] Adhikari S K and Salasnich L 2009 New J. Phys. 11 023011
[25] Muruganandam P and Adhikari S K 2009 Comput. Phys. Commun. 180 1888
[1] Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖). Chin. Phys. B, 2023, 32(2): 023701.
[2] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[3] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[4] Spurious symmetry-broken phase in a bidirectional two-lane ASEP with narrow entrances
Bo Tian(田波), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬), Bin Jia(贾斌). Chin. Phys. B, 2017, 26(2): 020503.
[5] Adiabatic tunneling of Bose-Einstein condensates with modulated atom interaction in a double-well potential
Xin Xiao-Tian (辛晓天), Huang Fang (黄芳), Xu Zhi-Jun (徐志君), Li Hai-Bin (李海彬). Chin. Phys. B, 2014, 23(7): 070307.
[6] Topological properties of one-dimensional hardcore Bose-Fermi mixture
Jia Yong-Fei (贾永飞), Guo Huai-Ming (郭怀明), Qin Ji-Hong (秦吉红), Chen Zi-Yu (陈子瑜), Feng Shi-Ping (冯世平). Chin. Phys. B, 2013, 22(9): 090308.
[7] Asymmetric simple exclusion processes with complex lattice geometries: A review of models and phenomena
Liu Ming-Zhe (刘明哲), Li Shao-Da (李少达), Wang Rui-Li. Chin. Phys. B, 2012, 21(9): 090510.
[8] Spontaneous symmetry breaking vacuum energy in cosmology
Zhou Kang(周康), Yue Rui-Hong(岳瑞宏), Yang Zhan-Ying(杨战营), and Zou De-Cheng(邹德成) . Chin. Phys. B, 2012, 21(7): 079801.
[9] Squeezing via coupling of Bose--Einstein condensates in a double-well potential with a cavity light field
Zhou Lu(周鲁), Kong Ling-Bo(孔令波), and Zhan Ming-Sheng(詹明生). Chin. Phys. B, 2008, 17(5): 1601-1606.
[10] A pseudo-spin model for the wall of cytoskeletal microtubule
Chen Ying (陈莹), Qiu Xi-Jun (邱锡钧), Li Ru-Xin (李儒新). Chin. Phys. B, 2005, 14(2): 427-432.
[11] A GENERATION OF EXACTLY SOLVABLE ANHARMONIC SYMMETRIC OSCILLATORS
Liu Ke-jia (刘克家). Chin. Phys. B, 2001, 10(4): 277-281.
No Suggested Reading articles found!