|
|
Entropic noise induced stability and double entropic stochastic resonance induced by correlated noises |
Zeng Chun-Hua(曾春华)a)b)†, Wang Hua(王华) b), and Wang Hui-Tao(王辉涛)b) |
a Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China; b Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract For the activated dynamics of a Brownian particle moving in a confined system with the presence of entropic barriers, this paper investigates a periodic driving and correlations between two noises. Within the two-state approximation, the explicit expressions of the mean first passage time (MFPT) and the spectral power amplification (SPA) are obtained, respectively. Based on the numerical computations, it is found that: (i) The MFPT as a function of the noise intensity exhibits a maximum with the positive correlations between two noises ($\lambda$>0), this maximum for MFPT shows the characteristic of the entropic noise induced stability (ENIS) effect. The intensity $\lambda$ of correlations between two noises can enhance the ENIS effect. (ii) The SPA as a function of the noise intensity exhibits a double-peak by tuning the noise correlation intensity $\lambda$, i.e., the existence of a double-peak behaviour is the identifying characteristic of the double entropic stochastic resonance phenomenon.
|
Received: 11 October 2010
Revised: 04 November 2010
Accepted manuscript online:
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
02.50.Ey
|
(Stochastic processes)
|
|
05.10.Gg
|
(Stochastic analysis methods)
|
|
Fund: Project supported by Natural Science Foundation of Yunnan Province of China (Grant No. 2010CD031) and the National Natural Science Foundation of China (Grant Nos. 50906035, 90610035, 51066002, and U0937604). |
Cite this article:
Zeng Chun-Hua(曾春华), Wang Hua(王华), and Wang Hui-Tao(王辉涛) Entropic noise induced stability and double entropic stochastic resonance induced by correlated noises 2011 Chin. Phys. B 20 050502
|
[1] |
Kramers H A 1940 Physica 7 284
|
[2] |
Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 L453
|
[3] |
Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys. 62 251
|
[4] |
Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
|
[5] |
Fichthorn K, Gulari K and Ziff R 1989 Phys. Rev. Lett. 63 1527
|
[6] |
Considing D, Redner S and Takayasu H 1989 Phys. Rev. Lett. 63 2857
|
[7] |
Mielke A 2000 Phys. Rev. Lett. 84 818
|
[8] |
Mantegna R N and Spagnolo B 1996 Phys. Rev. Lett. 76 563
|
[9] |
Goychuk I and Hänggi P 2003 Phys. Rev. Lett. 91 070601
|
[10] |
Goychuk I, Hänggi P, Vega J L and Miret-Artés 2005 Phys. Rev. E 71 061906
|
[11] |
Burada P S, Schmid G, Reguera D, Vainstein M H, Rubi J M and Hänggi P 2008 Phys. Rev. Lett. 101 130602
|
[12] |
Burada P S, Schmid G, Reguera D, Rubi J M and Hänggi P 2009 Eur. Phys. J. B 69 11
|
[13] |
Zhao L, Luo X Q, Wu D, Zhu S Q and Gu J H 2010 Chin. Phys. Lett. 27 040503
|
[14] |
Burada P S, Schmid G, Reguera D, Rubi J M and Hänggi P 2009 Europhys. Lett. 87 50003
|
[15] |
Mondal D, Das M and Ray D S 2010 J. Chem. Phys. 132 224102
|
[16] |
Liu J L and He J Z 2010 Chin. Phys. B 19 030504
|
[17] |
Wu D J, Cao L and Ke S Z 1994 Phys. Rev. E 50 2496
|
[18] |
Jia Y and Li J R 1996 Phys. Rev. E 53 5764
|
[19] |
Jia Y, Yu S N and Li J R 2000 Phys. Rev. E 62 1869
|
[20] |
Zeng C H 2010 Phys. Scr. 81 025009
|
[21] |
Liu Z H, Zhou Y R, Zhang A Y and Pang X F 2010 Acta Phys. Sin. 59 699 (in Chinese)
|
[22] |
Zhu S 1993 Phys. Rev. A 47 2405
|
[23] |
Jia Y, Cao L and Wu D J 1995 Phys. Rev. A 51 3196
|
[24] |
Xie C W and Mei D C 2004 Phys. Lett. A 323 421
|
[25] |
Jia Y and Li J R 1997 Phys. Rev. E 78 994
|
[26] |
Mei D C, Xie G Z, Cao L and Wu D J 1999 Phys. Rev. E 59 3880
|
[27] |
Mei D C, Xie C W and Zhang L 2003 Phys. Rev. E 68 051102
|
[28] |
Ai B Q, Wang X J, Liu G T and Liu L G 2003 Phys. Rev. E 67 022903
|
[29] |
Mei D C, Xie C W and Zhang L 2004 Eur. Phys. J. B 41 107
|
[30] |
Ai B Q, Wang X J, Liu G T and Liu L G 2008 Phys. Rev. E 77 013902
|
[31] |
Chaudhuri J R, Chattopadhya S and Banik S K 2007 Phys. Rev. E 76 021125
|
[32] |
Jin Y F and Xu W 2005 Chaos, Solitons and Fractals 23 275
|
[33] |
Berdichevsky V and Gitterman M 1999 Phys. Rev. E 60 1494
|
[34] |
Xu W, Jin Y F, Li W and Ma S J 2005 Chin. Phys. 14 1077
|
[35] |
Bai C Y, Yan Y and Mei D C 2010 Chin. Phys. B 19 060503
|
[36] |
Bag B C, Banik S K and Ray D S 2001 Phys. Rev. E 64 026110
|
[37] |
Xie W X, Xu W and Cai L 2007 Chin. Phys. 16 42
|
[38] |
Risken H 1989 The Fokker--Planck Equation 2nd ed. (Berlin: Springer)
|
[39] |
Reguera D and Rubi J M 2001 Phys. Rev. E 64 061106
|
[40] |
Reguera D, Schmid G, Burada P S, Rubi J M, Reimann P and Hänggi P 2006 Phys. Rev. Lett. 96 130603
|
[41] |
Burada P S, Schmid G, Reguera D, Rubi J M and Hänggi P 2007 Phys. Rev. E 75 051111
|
[42] |
McNamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854
|
[43] |
Schmid G and Hänggi P 2005 Physica A 351 95
|
[44] |
Jung P and Hänggi P 1991 Phys. Rev. A 44 8032
|
[45] |
Xu B, Duan F and Francois C B 2004 Phys. Rev. E 69 061110 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|