Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107802    DOI: 10.1088/1674-1056/19/10/107802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controlling electric field distribution by graded spherical core-shell metamaterials

Wei En-Bo(魏恩泊)a)†, Sun Lei(孙磊)b), and Yu Kin-Wah(余建华)b)c)‡
a Institute of Oceanology and KLOCW, Chinese Academy of Sciences, Qingdao 266071, China; b Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; c Institute of Theoretical Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Abstract  This paper investigates analytically the electric field distribution of graded spherical core-shell metamaterials, whose permittivity is given by the graded Drude model. Under the illumination of a uniform incident optical field, the obtained results show that the electrical field distribution in the shell region is controllable and the electric field peak's position inside the spherical shell can be confined in a desired position by varying the frequency of the optical field as well as the parameters of the graded dielectric profiles. It has also offered an intuitive explanation for controlling the local electric field by graded metamaterials.
Keywords:  graded metamaterial      plasmon resonance      optical electric field  
Received:  01 January 2010      Revised:  18 April 2010      Accepted manuscript online: 
PACS:  42.70.-a (Optical materials)  
  77.22.Ch (Permittivity (dielectric function))  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National 863 Project of China (Grant Nos. 2009AA09Z102 and 2008AA09A403) and the RGC General Research Fund of the Hong Kong SAR Government.

Cite this article: 

Wei En-Bo(魏恩泊), Sun Lei(孙磊), and Yu Kin-Wah(余建华) Controlling electric field distribution by graded spherical core-shell metamaterials 2010 Chin. Phys. B 19 107802

[1] Smith D R, Pendry J B and Wiltshire M C K 2004 Science 305 788
[2] Grigorenko A N, Geim A K, Gleeson H F, Zhang Y, Firsov A A, Khrushchev I Y and Betrovic J 2005 Nature 438 335
[3] Farhat M, Enoch S, Guenneau S and Movchan A B 2008 Phys. Rev. Lett. 101 134501
[4] Ma H, Qu S B and Xu Z 2009 Chin. Phys. B 18 1850
[5] Sun Y Z, Ran L X and Peng L 2009 Chin. Phys. B 18 174
[6] Pendry J B, Holden A J, Robbins D J and Stewart W J 1998 J. Phys.: Condens. Matter 10 4785
[7] Smith D R, Padllia W J, Vier D C, Netmat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[8] Shelby A, Smith D R and Schultz S 2001 Science 292 77
[9] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[10] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[11] Liu R, Ji C, Mock J J, Chin J Y, Cui T J and Smith D R 2009 Science 323 366
[12] Leonhardt U 2006 Science 312 1777
[13] Rahm M, Schuig D, Roberts D A, Cummer S A, Smith D R and Pendry J B 2008 Photonics and Nanostructures---Fundamentals and Applications 6 87
[14] Milton G W and Nicorovici N A 2006 Proc. Roy. Soc. A 462 3027
[15] Nicorovici N A, Milton G W, McPhedran R C and Botten L C 2007 Opt. Express 15 6314
[16] Alu A and Engheta N 2007 Opt. Express 15 7578
[17] Cummer S A and Schurig D 2007 New J. Phys. 9 45
[18] Chen H and Chan C T 2007 Appl. Phys. Lett. 90 241105
[19] Levy U, Abashin M, Ikeda K, Krishnamoorthy A, Cunninghan J and Fainman 2007 Phys. Rev. Lett. 98 243901
[20] Huang J P and Yu K W 2006 Phys. Rep. 431 87
[21] Fung T H, Leung L L, Xiao J J and Yu K W 2009 Opt. Commun. 282 1028
[22] Wei E B and Yu K W 2009 Phys. Rev. E 80 046607
[23] Huang J P and Yu K W 2004 Appl. Phys. Lett. 85 94
[24] Bailey W N (ed.) 1935 Generalized Hyper-Geometric Series (Cambridge: Cambridge University Press)
[25] Gu G Q and Yu K W 2003 J. Appl. Phys. 94 3376
[26] Dong L, Gu G Q and Yu K W 2003 Phys. Rev. B 67 224205
[27] Yu K W and Gu G Q 2005 Phys. Lett. A 345 448
[28] Wei E B, Gu G Q and Poon Y M 2008 Phys. Rev. B 77 104204
[29] Wei E B and Poon Y M 2005 J. Appl. Phys. 98 014104 endfootnotesize
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[10] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[11] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[12] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[13] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[14] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[15] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
No Suggested Reading articles found!