Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 104208    DOI: 10.1088/1674-1056/19/10/104208
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Study on pulse compression in tapered holey fibres

Ma Wen-Wen(马文文), Li Shu-Guang(李曙光), Yin Guo-Bing(尹国冰), Fu Bo(付博), and Zhang Lei(张磊)
Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  This paper proposes three kinds of tapered holey fibres with a multi-layer of holes whose pitch of air holes at the end of untapered and tapered are 5.8 μm and 1.8 μm. The central wavelength which locates in the anomalous dispersion region is 1.55 μm. An adaptive split-step Fourier method is numerically used to study the pulse propagation in tapered holey fibres. For the considered convex tapered holey fibre, at a wavelength of 1.55 μm, a compression factor of 136.7 can be achieved by initial width of 800 fs propagation through a length of 0.8 m. It demonstrates that in anomalous dispersion region, pulse can be compressed with the increase of nonlinearity coefficient and the decrease of dispersion coefficient.
Keywords:  tapered holey fibre      pulse compression      anomalous dispersion  
Received:  21 March 2010      Revised:  07 April 2010      Accepted manuscript online: 
PACS:  42.30.Kq (Fourier optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.70.Qs (Photonic bandgap materials)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874145), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20091333110010), the Natural Science Foundation of Hebei Province of China (Grant No. F2009000481), the China Postdoctoral Science Foundation (Grant Nos. 20080440014 and 200902046).

Cite this article: 

Ma Wen-Wen(马文文), Li Shu-Guang(李曙光), Yin Guo-Bing(尹国冰), Fu Bo(付博), and Zhang Lei(张磊) Study on pulse compression in tapered holey fibres 2010 Chin. Phys. B 19 104208

[1] Night J C, Birk T A, Russell P S J and Atkin D M 1996 Opt. Lett. 21 1547
[2] Ranka J K and Russell P S J 2003 Science 299 358
[3] Wang W, Hou L T, Song J J and Zhou G Y 2009 Opt. Commun. 282 3468
[4] Kinght J C, Arriaga J, Birks T A, Wadsworth W J and Russell P S J 2000 IEEE Photo. Technol. Lett. 12 807
[5] Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Cai L and Zhang R B 2004 Acta Phys. Sin. 53 4243 (in Chinese)
[6] Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X and Jian S S 2008 Acta Phys. Sin. 57 5735 (in Chinese)
[7] Lou S Q, Ren G B, Yan F P and Jian S S 2005 Acta Phys. Sin. 54 1029 (in Chinese)
[8] Lou S Q, Wang Z, Ren G B and Jian S S 2004 Chin. Phys. 13 1493
[9] Ren G B, Wang Z, Lou S Q and Jian S S 2004 Acta Phys. Sin. 53 1856 (in Chinese)
[10] Li S G, Liu X D and Hou L T 2003 Acta Phys. Sin. 52 2811 (in Chinese)
[11] Li S G, Xing G L, Zhou G Y and Hou L T 2006 Acta Phys. Sin. 55 238 (in Chinese)
[12] Zhang L, Li S G, Yao Y Y, Fu B, Zhang M Y and Zheng Y 2010 Acta Phys. Sin. 59 1101 (in Chinese)
[13] Jiang L H and Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese)
[14] Zhong X Q and Xiang A P 2009 Chin. Phys. B 18 624
[15] Liu W H, Song X Z, Wang Q S, Liu H J, Zhao W, Liu X M, Peng Q J and Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese)
[16] Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P S J, Omenetto F G, Efimov A and Taylor A J 2003 Nature 424 511
[17] Song Z M, Pang D Q, Zhang Z G and Wang Q Y 2005 Acta Phys. Sin. 54 2769 (in Chinese)
[18] Li S G, Zhou G Y, Xing G L, Hou L T, Wang Q Y, Li Y F and Hu M L 2005 Acta Phys. Sin. 54 1599 (in Chinese)
[19] M"agi E C, Steinvurzel P and Eggleton B J 2004 Opt. Express 12 776
[20] Chandalia J K, Eggleton B J, Windeler R S, Kosinski S G, Liu X and Xu C 2001 IEEE 13 52
[21] Town G E and Lizier J T 2001 Opt. Lett. 26 1042
[22] Yang Y, Jon Lee, Karl Reichard, Paul Ruffin, Frank Liang, Dave Ditto and Yin S Z 2005 Opt. Commun. 249 129
[23] Birks T A, Wadsworth W J and Russell P S J 2000 Opt. Lett. 25 1415
[24] Liu X, Xu C, Knox W H, Chandalia J K, Eggleton B J, Kosinski S G and Windeler R S 2001 Opt. Lett. 26 358
[25] Jonathan, Marks B S and Menyuk C R 2006 Opt. Express 14 4026
[26] Travers J C, Stone J M, Rulkov A B, Cumberland B A, George A K, Popov S V, Knight J C and Taylor J R 2007 Opt. Express 15 13203
[27] Pelusi M D and Liu H F 1997 IEEE J. Quantum Electron. 33 1430
[28] Akira Shirakawa, Jun Ota, Mitsuru Musha, Ken'ichi Nakagawa and Ken-ichi Ueda 2005 Opt. Express 13 1221
[29] Khoo E H, Liu A Q and Wu J H 2005 Opt. Express 13 7748
[30] Li S G, Xing G L, Zhou G Y, Han Y, Hou L T, Hu M L, Li Y F and Wang Q Y 2006 Chin. Phys. 15 437 endfootnotesize
[1] Energetic few-cycle pulse compression in gas-filled hollow core fiber with concentric phase mask
Yu Zhao(赵钰), Zhi-Yuan Huang(黄志远), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2019, 28(6): 064207.
[2] Loss induced negative refraction and super-prism effect at highly absorptive interface
Jian Wu(吴坚), Tao Wang(王涛), Tianyue Hou(侯天悦), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), Pu Zhou(周朴), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(5): 054201.
[3] Generation of few-cycle radially-polarized infrared pulses in a gas-filled hollow-core fiber
Rui-Rui Zhao(赵睿睿), Zhi-Yuan Huang(黄志远), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新). Chin. Phys. B, 2018, 27(10): 104204.
[4] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[5] Lorentz force electrical impedance tomography using pulse compression technique
Zhi-shen Sun(孙直申), Guo-qiang Liu(刘国强), Hui Xia(夏慧). Chin. Phys. B, 2017, 26(12): 124302.
[6] Controllable optical mirror of cesium atoms with four-wave mixing
Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香). Chin. Phys. B, 2014, 23(9): 093204.
[7] Supercontinuum spectra generation in the single-mode optical fibre with concave dispersion profile
Xu Wen-Cheng (徐文成), Gao Jie-Li (高洁丽), Liang Zhan-Qiang (梁湛强), Chen Qiao-Hong (陈巧红), Liu Song-Hao (刘颂豪). Chin. Phys. B, 2006, 15(4): 715-720.
[8] Trichromatic phase manipulation of the response of a two-level medium to an arbitrarily intense probe field
Guo Hong-Ju (郭洪菊), Hu Xiang-Ming (胡响明), Li Jing-Yan (李景艳), Li Xiao-Xia (李晓霞), Shi Wen-Xing (石文星), Xu Qing (徐清). Chin. Phys. B, 2006, 15(2): 383-388.
[9] Subpicosecond pulse compression in nonlinear photonic crystal waveguides based on the formation of high-order optical solitons
Chen Xiong-Wen (陈雄文), Lin Xu-Sheng (林旭升), Lan Sheng (兰胜). Chin. Phys. B, 2005, 14(2): 366-371.
[10] Ultra-narrow bandwidth optical filters consisting of one-dimensional photonic crystals with anomalous dispersion materials
Liu Jiang-Tao (刘江涛), Zhou Yun-Song (周云松), Wang Fu-He (王福合), Gu Ben-Yuan (顾本源). Chin. Phys. B, 2005, 14(12): 2474-2477.
[11] Investigation of stimulated Brillouin scattering for broadband KrF laser
Wang Xiao-Hui (王晓慧), Lü Zhi-Wei (吕志伟), Lin Dian-Yang (林殿阳), Wang Chao (王超), Zhao Xiao-Yan (赵晓彦), Tang Xiu-Zhang (汤秀章), Zhang Hai-Feng (张海峰), Shan Yu-Sheng (单玉生). Chin. Phys. B, 2004, 13(10): 1733-1737.
[12] Effects of matrices on Mie scattering in the mid-infrared region
Liu Xiao-Dong (刘晓东), Li Shu-Guang (李曙光), Guo Hong-Lian (郭红莲), Zhang Dao-Zhong (张道中), Li Zhao-Lin (李兆霖), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2003, 12(10): 1143-1148.
[13] Enhanced pulse compression induced by the interaction between the third-order dispersion and the cross-phase modulation in birefringent fibres
Xu Wen-Cheng (徐文成), Chen Wei-Cheng (陈伟成), Zhang Shu-Min (张书敏), Luo Ai-Ping (罗爱平), Liu Song-Hao (刘颂豪). Chin. Phys. B, 2002, 11(4): 352-357.
No Suggested Reading articles found!