Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(10): 3574-3579    DOI: 10.1088/1674-1056/17/10/008
GENERAL Prev   Next  

Inverse scattering method and soliton solutionfamily for the Einstein--Maxwell theory with multiple Abelian gauge fields

Gao Ya-Jun(高亚军)
Department of Physics, Bohai University, Jinzhou 121013, China
Abstract  A Hauser--Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary axisymmetric Einstein--Maxwell theory with multiple Abelian gauge fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method be fine and effective in practical application. As an example, a concrete family of soliton solutions for the considered theory is obtained.
Keywords:  Einstein--Maxwell theory with multiple Abelian gauge fields      inverse scattering method      soliton solution family  
Received:  07 March 2008      Revised:  14 April 2008      Accepted manuscript online: 
PACS:  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  11.15.-q (Gauge field theories)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10475036).

Cite this article: 

Gao Ya-Jun(高亚军) Inverse scattering method and soliton solutionfamily for the Einstein--Maxwell theory with multiple Abelian gauge fields 2008 Chin. Phys. B 17 3574

[1] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[2] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[3] Circular geodesics and accretion disk in the spacetime of a black hole including global monopole
Sun Xu-Dong (孙旭东), Chen Ju-Hua (陈菊华), Wang Yong-Jiu (王永久). Chin. Phys. B, 2014, 23(6): 060401.
[4] The stability of a shearing viscous star with an electromagnetic field
M. Sharif, M. Azama. Chin. Phys. B, 2013, 22(5): 050401.
[5] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[6] Static spherically symmetric star in Gauss–Bonnet gravity
Zhou Kang(周康), Yang Zhan-Ying(杨战营), Zou De-Cheng(邹德成), and Yue Rui-Hong(岳瑞宏) . Chin. Phys. B, 2012, 21(2): 020401.
[7] Nonlinear electrodynamics coupled to teleparallel theory of gravity
Gamal G. L. Nashed. Chin. Phys. B, 2011, 20(2): 020402.
[8] New infinite-dimensional hidden symmetries for the stationary axisymmetric Einstein-Maxwell equations with multiple Abelian gauge fields
Gao Ya-Jun (高亚军). Chin. Phys. B, 2004, 13(5): 602-611.
[9] QUASILOCAL ENERGY FOR STATIONARY AXISYMMETRIC EMDA BLACK HOLE
Wang Shi-liang (王世良), Jing Ji-liang (荆继良). Chin. Phys. B, 2001, 10(3): 234-239.
[10] THERMAL PROPERTIES OF KERR-NEWMAN-DE SITTER XY BLACK HOLES
XU DIAN-YAN (许殿彦), XU XIAO-FENG (许晓风). Chin. Phys. B, 1997, 6(4): 241-249.
[11] CHARGED STATIC CYLINDRICAL BLACK HOLE
HUANG CHAO-GUANG (黄超光). Chin. Phys. B, 1995, 4(8): 617-630.
[12] SYMMETRIES OF THE ELECTROMAGNETIC FIELDS IN GENERAL RELATIVITY
ZAFAR AHSAN. Chin. Phys. B, 1995, 4(5): 337-343.
[13] PLANE SYMMETRIC GENERAL SOLUTION TO EINSTEIN-MAXWELL EQUATIONS IN HIGHER DIMENSIONS
LIANG CAN-BIN (梁灿彬), SHANG YU-MING (商聿明). Chin. Phys. B, 1992, 1(3): 161-166.
No Suggested Reading articles found!