Abstract This paper studies Mei symmetry which leads to a generalized Hojman conserved quantity for variable mass systems with unilateral holonomic constraints. The differential equations of motion for the systems are established, the definition and criterion of the Mei symmetry for the systems are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the systems is obtained and a generalized Hojman conserved quantity deduced from the Mei symmetry is got. An example is given to illustrate the application of the results.
Received: 10 October 2006
Revised: 04 November 2006
Accepted manuscript online:
Jing Hong-Xing(荆宏星), Li Yuan-Cheng(李元成), Wang Jing(王静), Xia Li-Li(夏丽莉), and Hou Qi-Bao(后其宝) Mei symmetry and generalized Hojman conserved quantity for variable mass systems with unilateral holonomic constraints 2007 Chinese Physics 16 1827
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.