Abstract In addition to the phonon variable there is the phason variable in hydrodynamics for quasicrystals. These two kinds of hydrodynamic variables have different transformation properties. The phonon variable transforms under the vector representation, whereas the phason variable transforms under another related representation. Thus, a basis (or a set of basis functions) in the representation space should include such two kinds of variables. This makes it more difficult to determine the physical property tensors of quasicrystals. In this paper the group-theoretical method is given to determine the physical property tensors of quasicrystals. As an illustration of this method we calculate the third-order elasticity tensors of quasicrystals with five-fold symmetry by means of basis functions. It follows that the linear phonon elasticity is isotropic, but the nonlinear phonon elasticity is anisotropic for pentagonal quasicrystals. Meanwhile, the basis functions are constructed for all noncrystallographic point groups of quasicrystals.
Received: 24 February 2006
Revised: 13 April 2006
Accepted manuscript online:
Gong Ping(龚平), Hu Cheng-Zheng(胡承正), Zhou Xiang(周详), Wang Ai-Jun(王爱军), and Miao Ling(缪灵) Group-theoretical method for physical property tensors of quasicrystals 2006 Chinese Physics 15 2065
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.