A secure identification system using coherent states
He Guang-Qiang (何广强), Zeng Gui-Hua (曾贵华)
The State Key Laboratory on Fiber-Optic Local Area Networks and Advanced Optical Communication Systems, Electronic Engineering Department, Shanghai Jiaotong University, Shanghai 200030, China
Abstract A quantum identification system based on the transformation of polarization of a mesoscopic coherent state is proposed. Physically, an initial polarization state which carries the identity information is transformed into an arbitrary elliptical polarization state. To verify the identity of a communicator, a reverse procedure is performed by the receiver. For simply describing the transformation procedure, the analytical methods of Poincaré sphere and quaternion are adopted. Since quantum noise provides such a measurement uncertainty for the eavesdropping that the identity information cannot be retrieved from the elliptical polarization state, the proposed scheme is secure.
Received: 19 December 2004
Revised: 06 July 2005
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.