Abstract In this paper, the differential equations of motion of a three-body interacting pairwise by inverse cubic forces (``centrifugal potential'') in addition to linear forces (``harmonical potential'') are expressed in Ermakov formalism in two-dimension polar coordinates, and the Ermakov invariant is obtained. By rescaling of the time variable and the space coordinates, the parametric orbits of the three bodies are expressed in terms of relative energy H1 and Ermakov invariant. The form invariance of the transformations of two conserved quantities are also studied.
Received: 10 October 2004
Revised: 03 November 2004
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.