Please wait a minute...
Chinese Physics, 2005, Vol. 14(1): 12-16    DOI: 10.1088/1009-1963/14/1/003
GENERAL Prev   Next  

Form invariance of Raitzin's canonical equations of a nonholonomic mechanical system

Qiao Yong-Fen (乔永芬)abc, Li Ren-Jie (李仁杰)b, Ma Yong-Sheng (马永胜)c 
a Department of Mechanical Engineering and Automation, Zhejiang Institute of Science and Technology, Hangzhou 312207, China; b Faculty of Science, Laiyang Agricultural College, Laiyang 265200, China; c Engineering College of Northeast Agricultural University, Harbin 150030, China
Abstract  A form invariance of Raitzin's canonical equations of a nonholonomic mechanical system is studied. The Raitzin canonical equations of the system are established. The definition and criterion of the form invariance in the system under infinitesimal transformations of groups are given. The relation between the form invariance and the conserved quantity of the system is obtained and an example is also given to illustrate the application of the result.
Keywords:  nonholonomic system      Raitzin's canonical equation      form invariance      conserved quantity  
Received:  08 June 2004      Revised:  25 August 2004      Accepted manuscript online: 
PACS:  0320  
  0200  
Fund: Project supported by the Heilongjiang Natural Science Foundation, China (Grant No 9507)

Cite this article: 

Qiao Yong-Fen (乔永芬), Li Ren-Jie (李仁杰), Ma Yong-Sheng (马永胜) Form invariance of Raitzin's canonical equations of a nonholonomic mechanical system 2005 Chinese Physics 14 12

[1] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[2] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[3] Generalized Chaplygin equations for nonholonomic systems on time scales
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(2): 020502.
[4] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[5] Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm
Shixing Liu(刘世兴), Chang Liu(刘畅), Wei Hua(花巍), Yongxin Guo(郭永新). Chin. Phys. B, 2016, 25(11): 114501.
[6] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[7] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[8] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[9] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[10] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[11] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[12] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[13] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[14] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[15] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
No Suggested Reading articles found!