Please wait a minute...
Chinese Physics, 2004, Vol. 13(6): 974-978    DOI: 10.1088/1009-1963/13/6/032
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Quantum statistical entropy for Kerr-de Sitter black hole

Zhang Li-Chun (张丽春), Wu Yue-Qin (武月琴), Zhao Ren (赵仁)
Department of Physics, Yanbei Normal Institute, Datong 037000, China
Abstract  Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n+2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole's entropy which contains two horizons (a black hole's horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole's horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole's entropy and horizon's area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.
Keywords:  quantum statistics      brick-wall method      membrane model      entropy of black hole      higher-dimensional black hole  
Received:  28 July 2003      Revised:  12 December 2003      Accepted manuscript online: 
PACS:  97.60.Lf (Black holes)  
  04.20.Gz (Spacetime topology, causal structure, spinor structure)  
  98.80.-k (Cosmology)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
Fund: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No 20001009).

Cite this article: 

Zhang Li-Chun (张丽春), Wu Yue-Qin (武月琴), Zhao Ren (赵仁) Quantum statistical entropy for Kerr-de Sitter black hole 2004 Chinese Physics 13 974

[1] Dynamical evolution of photon-added thermal state in thermal reservoir
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春). Chin. Phys. B, 2019, 28(11): 110301.
[2] Enhanced electron–positron pair creation by the frequency chirped laser pulse
Jiang Min (姜敏), Xie Bai-Song (谢柏松), Sang Hai-Bo (桑海波), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(10): 100307.
[3] Entropy of a rotating and charged black string to all orders in the Planck length
Zhao Ren(赵仁), Wu Yue-Qin (武月琴), and Zhang Li-Chun(张丽春). Chin. Phys. B, 2009, 18(5): 1749-1754.
[4] Subleading terms of thermodynamic quantities around static spherical black holes
Li Gu-Qiang(李固强). Chin. Phys. B, 2009, 18(1): 66-69.
[5] Uncertainty relation and black hole entropy of Kerr spacetime
Hu Shuang-Qi (胡双启), Zhao Ren (赵仁). Chin. Phys. B, 2005, 14(7): 1477-1481.
[6] Bosonic and fermionic entropy of black holes with different temperatures on horizon surface
Ding Tian-Ran (丁天然), Wu Yue-Qin (武月琴), Zhang Li-Chun (张丽春). Chin. Phys. B, 2004, 13(2): 268-272.
[7] First quantum correction to entropy of Vaidya-Bonner black holes due to arbitrary spin fields
Gao Chang-Jun (高长军), Shen You-Gen (沈有根). Chin. Phys. B, 2002, 11(9): 890-893.
[8] Entropy and topology of the Kerr-de Sitter black hole
Chen Song-Bai (陈松柏), Jing Ji-Liang (荆继良). Chin. Phys. B, 2002, 11(1): 87-90.
No Suggested Reading articles found!