Abstract Energy loss due to a fast-electron beam interacting with the hot plasma at a high density is analysed theoretically. By splitting the particle density fluctuations into the individual part due to the random thermal motion of the individual electrons and the collective part due to plasma-wave excitation, we are concerned with the collective interaction of the relativistic plasma electrons resulting from the Coulomb interactions. Consequently, we derive the frequency of the hot plasma and the "Debye length" with the modification of the relativistic effect. And finally we calculate the energy loss of a fast-electron beam due to the excitation of collective oscillation in the hot plasma.
Received: 07 March 2003
Revised: 21 August 2003
Accepted manuscript online:
Fund: Project supported by the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KJCX2-SW-N02).
Cite this article:
Ma Jin-Yi (马瑾怡), Qiu Xi-Jun (邱锡钧), Zhu Zhi-Yuan (朱志远) Energy loss of a fast-electron beam due to the excitation of collective oscillation in hot plasma 2004 Chinese Physics 13 373
A STUDY OF HIGH POWER MICROWAVE AIR BREAKDOWN Liu Guo-zhi (刘国治), Liu Jing-yue (刘静月), Huang Wen-hua (黄文华), Zhou Jin-shan (周金山), Song Xiao-xin (宋晓欣), Ning Hui (宁辉). Chin. Phys. B, 2000, 9(10): 757-763.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.