Abstract Using low-energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) it has been found that glycine molecules adsorbed on Cu(001) can form but only the (2×4) and c(2×4) superstructures. On the basis of the missing LEED spots of the surface, it has been concluded that: each (2×4) unit cell consists of two molecules, one being the mirror image of the other; the C-C axis of both molecules lies in the mirror plane of the Cu substrate without a significant shift and twist from the plane; and the two O atoms of the carboxylate group of both molecules locate at the same height level without significant buckling. According to these conclusions, a structural model has been proposed for the (2×4) superstructure (a model for the c(2×4) superstructure already exists). We argue that the (2×4) and c(2×4) superstructures must have similar specific surface free energy, that their hydrogen bonds must be of N-H-OII type, and that their local adsorption geometry must be similar or even the same. The advantage of combining STM with LEED to determine surface structures is clearly demonstrated.
Received: 25 February 2002
Revised: 19 December 2001
Accepted manuscript online:
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10134030).
Cite this article:
Ge Si-Ping (葛四平), Zhao Xue-Ying (赵学应), Gai Zheng (盖峥), Zhao Ru-Guang (赵汝光), Yang Wei-Sheng (杨威生) Adsorption geometry of glycine on Cu(001) determined with low-energy electron diffraction and scanning tunnelling microscopy 2002 Chinese Physics 11 839
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.