AbstractThe third-order optical nonlinearity of Ag-O-Cs thin films, where Ag nanoparticles are embedded into a CsxO semiconductor matrix, was measured by the femtosecond optical Kerr technique. The third-order nonlinear optical susceptibility, $\chi$(3), of the thin films was estimated to be 1.1×10-9 esu at the incident wavelength of 820 nm. The response time, i.e. the full width at half-maximum of the Kerr signal, is as fast as 114 fs only. The intrinsic third-order optical nonlinearity can be attributed to the intraband transition of electrons from the occupied state near the Fermi level to the unoccupied state. It is suggested that such a nonlinearity is further enhanced by the local field effect that is present in the metallic nanoparticles composite thin films.
Received: 14 March 2001
Accepted manuscript online:
Fund: Project supported partly by the National Natural Science Foundation of China (Grant No. 60071017) and the Natural Science Foundation of Beijing, China (Grant No. 2992019).
Cite this article:
Zhang Qi-feng (张琦锋), Shao Qing-yi (邵庆益), Hou Shi-min (侯士敏), Zhang Geng-min (张耿民), Liu Wei-min (刘惟敏), Xue Zeng-quan (薛增泉), Wu Jin-lei (吴锦雷), Wang Shu-feng (王树峰), Liang Rui-sheng (梁瑞生), Huang Wen-tao (黄文涛), Wang Dan-ling (王丹翎), Gong Qi-huang (龚旗煌) LARGE AND EXTREMELY FAST THIRD-ORDER NON-LINEARITY OF Ag NANOPARTICLES EMBEDDED INTO A CsxO SEMICONDUCTOR MATRIX 2001 Chinese Physics 10 65
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.