CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Distance-dependent magnetization modulation induced by inter-superatomic interactions in Cr-doped Au6Te12Se8 dimers |
Yurou Guan(官雨柔)1,2, Nanshu Liu(刘南舒)1,2, Cong Wang(王聪)1,2, Fei Pang(庞斐)1,2, Zhihai Cheng(程志海)1,2, and Wei Ji(季威)1,2,† |
1 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China |
|
|
Abstract Individual superatoms are assembled into more complicated nanostructures to diversify their physical properties. Magnetism of assembled superatoms remains, however, ambiguous, particularly in terms of its distance dependence. Here, we report density functional theory calculations on the distance-dependent magnetism of transition metal embedded Au$_{6}$Te$_{8}$Se$_{12}$ (ATS) superatomic dimers. Among the four considered transition metals, which include V, Cr, Mn and Fe, the Cr-embedded Au$_{6}$Te$_{12}$Se$_{8}$ (Cr@ATS) is identified as the most suitable for exploring the inter-superatomic distance-dependent magnetism. We thus focused on Cr@ATS superatomic dimers and found an inter-superatomic magnetization-distance oscillation where three transitions occur for magnetic ordering and/or anisotropy at different inter-superatomic distances. As the inter-superatomic distance elongates, a ferromagnetism (FM)-to-antiferromagnetic (AFM) transition and a sequential AFM-to-FM transition occur, ascribed to competitions among Pauli repulsion and kinetic-energy-gains in formed inter-superatomic Cr-Au-Au-Cr covalent bonds and Te-Te quasi-covalent bonds. For the third transition, in-plane electronic hybridization contributes to the stabilization of the AFM configuration. This work unveils two mechanisms for tuning magnetism through non-covalent interactions and provides a strategy for manipulating magnetism in superatomic assemblies.
|
Received: 17 August 2024
Revised: 10 October 2024
Accepted manuscript online: 12 October 2024
|
PACS:
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
Fund: We gratefully acknowledge financial support from the National Key R&D Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 11974422, 12104504, and 12204534), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 22XNKJ30). |
Corresponding Authors:
Wei Ji
E-mail: wji@ruc.edu.cn
|
Cite this article:
Yurou Guan(官雨柔), Nanshu Liu(刘南舒), Cong Wang(王聪), Fei Pang(庞斐), Zhihai Cheng(程志海), and Wei Ji(季威) Distance-dependent magnetization modulation induced by inter-superatomic interactions in Cr-doped Au6Te12Se8 dimers 2024 Chin. Phys. B 33 127502
|
[1] Khanna S N and Jena P 1992 Phys. Rev. Lett. 69 1664 [2] Khanna S N and Jena P 1995 Phys. Rev. B 51 13705 [3] Luo Z and Castleman A W 2014 Acc. Chem. Res. 47 2931 [4] Reber A C and Khanna S A O 2017 Acc. Chem. Res. 50 255 [5] Jena P and Sun Q 2018 Chemical Reviews 118 5755 [6] Doud E A, Voevodin A, Hochuli T J, Champsaur A M, Nuckolls C and Roy X 2020 Nat. Rev. Mater. 5 371 [7] Gao Y and Wang Z 2016 Chin. Phys. B 25 083102 [8] Feng M, Zhao J, Huang T, Zhu X and Petek H 2011 Acc. Chem. Res. 44 360 [9] Yin B and Luo Z 2021 Coord. Chem. Rev. 429 213643 [10] Claridge S A, Castleman A W, Jr., Khanna S N, Murray C B, Sen A and Weiss P S 2009 ACS Nano 3 244 [11] Yu F, Liu Z, Li J, Huang W, Yang X and Wang Z 2022 Chin. Phys. B 31 128107 [12] Zhao J, Huang X, Jin P and Chen Z 2015 Coord. Chem. Rev. 289-290 315 [13] Xia N, Xing J, Peng D, Ji S, Zha J, Yan N, Su Y, Jiang X, Zeng Z, Zhao J and Wu Z 2022 Nat. Commun. 13 5934 [14] Liu Z, Wang X Q, Cai J and Zhu H 2015 J. Phys. Chem. C 119 1517 [15] Du Q, Wang Z, Zhou S, Zhao J and Kumar V 2021 Phys. Rev. Mater. 5 066001 [16] Robles R and Khanna S N 2009 Phys. Rev. B 80 115414 [17] Zhao Y, Guo Y, Qi Y, Jiang X, Su Y and Zhao J 2023 Adv. Sci. 10 2301265 [18] Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z and Ji W 2019 Phys. Rev. B 99 144401 [19] Wu L, Zhou L, Zhou X, Wang C and Ji W 2022 Phys. Rev. B 106 L081401 [20] Wang Y, Wang C, Liang S, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W and Miao F 2020 Adv. Mater. 32 2004533 [21] Lv H Y, Lu W J, Shao D F, Liu Y and Sun Y P 2015 Phys. Rev. B 92 214419 [22] Xian J, Wang C, Nie J, Li R, Han M, Lin J, Zhang W, Liu Z, Zhang Z, Miao M, Yi Y, Wu S, Chen X, Han J, Xia Z, Ji W and Fu Y 2022 Nat. Commun. 13 257 [23] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Ye Y, Huang Y, Xu X, Duan X, Ji W and Duan X 2021 Nat. Mater. 20 818 [24] Guo J G, Chen X, Jia X Y, Zhang Q H, Liu N, Lei H C, Li S Y, Gu L, Jin S F and Chen X L 2017 Nat. Commun. 8 871 [25] Bobrova O V, Kasatkin A V, Laufek F, Nestola F, Plášil J, Tolstykh N D, Tuhý M and Vymazalová A 2020 Mineral. Mag. 84 117 [26] Xing S, Wu L, Wang Z, Chen X, Liu H, Han S, Lei L, Zhou L, Zheng Q, Huang L, Lin X, Chen S, Xie L, Chen X, Gao H, Cheng Z, Guo J, Wang S and Ji W 2022 Phys. Rev. X 12 041034 [27] Chen X, Fei G, Song Y, Ying T, Huang D, Pan B, Yang D, Yang X, Chen K, Zhan X, Wang J, Zhang Q, Li Y, Gu L, Gou H, Chen X, Li S, Cheng J, Liu X, Hosono H, Guo J G and Chen X 2022 J. Am. Chem. Soc. 144 20915 [28] Jia X, Yu Y, Chen X, Guo J, Ying T, He L, Chen X and Li S 2018 Chin. Phys. B 27 067401 [29] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399 [30] Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405 [31] Qiao J, Kong X, Hu Z-X, Yang F and Ji W 2014 Nat. Commun. 5 4475 [32] Wu J B, Hu Z X, Zhang X, Han W P, Lu Y, Shi W, Qiao X F, Ijiäs M, Milana S, Ji W, Ferrari A C and Tan P H 2015 ACS Nano 9 7440 [33] Puretzky A A, Oyedele A D, Xiao K, Haglund A V, Sumpter B G, Mandrus D, Geohegan D B and Liang L 2018 2D Mater. 5 035016 [34] Hu Z, Kong X, Qiao J, Normand B and Ji W 2016 Nanoscale 8 2740 [35] Wang C, Zhou X, Zhou L, Pan Y, Lu Z, Wan X, Wang X and Ji W 2020 Phys. Rev. B 102 020402 [36] Blochl P E 1994 Phys. Rev. B 50 17953 [37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [39] Grimme S, Antony J, Ehrlich S and Krieg H 2010 The Journal of Chemical Physics 132 154104 [40] Tonner R, Rosenow P and Jakob P 2016 Phys. Chem. Chem. Phys. 18 6316 [41] Smith D G A, Burns L A, Patkowski K and Sherrill C D 2016 J. Phys. Chem. Lett. 7 2197 [42] Souza P H, Deus D P D A, Brito W H and Miwa R H 2022 Phys. Rev. B 106 155118 [43] Błoński P and Hafner J 2009 Phys. Rev. B 79 224418 [44] Qiao J, Pan Y, Yang F, Wang C, Chai Y and Ji W 2018 Sci. Bull. 63 159 [45] Shi K, Sun Y, Yan J, Deng S, Wang L, Wu H, Hu P, Lu H, Malik M I, Huang Q and Wang C 2016 Adv. Mater. 28 3761 [46] Shen F, Zhou H, Hu F, Wang J, Wu H, Huang Q, Hao J, Yu Z, Gao Y, Lin Y, Wang Y, Zhang C, Yin Z, Wang J, Deng S, Chen J, He L, Liang T, Sun J R, Zhao T and Shen B 2021 J. Am. Chem. Soc. 143 6798 [47] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491 [48] Bruno P and Chappert C 1991 Phys. Rev. Lett. 67 1602 [49] Heinrich B and Cochran J F 1993 Adv. Phys. 42 523 [50] Matsukura F, Ohno H, Shen A and Sugawara Y 1998 Phys. Rev. B 57 R2037 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|