INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Quantum-mechanical understanding on structure dependence of image potentials of single-walled boron nitride nanotubes |
Yu Zhang(张煜)1,2,†, Zhiman Zhang(张芷蔓)1,†, Weiliang Wang(王伟良)3, Shaolin Zhang(张绍林)1,2, and Haiming Huang(黄海鸣)1,2,‡ |
1 Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China; 2 Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510555, China; 3 School of Physics, Guangdong Province Key Laboratory of Display Material and Technology, Center for Neutron Science and Technology, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract The recent discovery of field emission devices based on one-dimensional nanostructures has attracted much interest in emerging applications on next-generation flat panel displays, molecule-based sensors, and so forth. To achieve a comprehensive understanding of surface potentials at the nano-emitters during the tunneling process, in this study we systematically investigated the image potentials of single-walled boron nitride nanotubes with different edges, diameters and lengths in the frame of a composite first-principles calculation. The image potentials of zigzag single-walled boron nitride nanotubes are found to be dependent on the non-equivalent sides. Only the image potentials of isolated armchair single-walled boron nitride nanotube can be well fitted with the image potential of an ideal metal sphere of a size comparable to the tube diameter. On the contrary, the image potentials of zigzag and grounded armchair single-walled boron nitride nanotubes exhibit a strong length-dependence characteristic and are significantly different from that of an ideal metal sphere, which originates from the significant axial symmetry breaking of induced charge at the tip for the long tube. The correlation between the testing electron and electronic structure of single-walled boron nitride nanotube has also been discussed.
|
Received: 18 July 2024
Revised: 25 September 2024
Accepted manuscript online: 27 September 2024
|
PACS:
|
85.45.Db
|
(Field emitters and arrays, cold electron emitters)
|
|
73.63.Fg
|
(Nanotubes)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
85.30.Hi
|
(Surface barrier, boundary, and point contact devices)
|
|
Fund: The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 12004083 and 51972069), the Science and Technology Projects in Guangzhou (Grant Nos. 202102020350 and 202102010470), the National Key R&D Program of China (Grant No. 2016YFB0200800), the Opening Project of Joint Laboratory for Planetary Science and Supercomputing (Grant No. CSYYGS-QT-2024-14), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B030330001), the College Students Innovation and Entrepreneurship Training Program of Guangdong Province (Grant No. S202311078133), Key Discipline of Materials Science and Engineering, Bureau of Education of Guangzhou (Grant No. 202255464), the National Supercomputer Center in Guangzhou, the National Supercomputing Center in Chengdu, and the Network Center of Guangzhou University. |
Corresponding Authors:
Haiming Huang
E-mail: huanghm@gzhu.edu.cn
|
Cite this article:
Yu Zhang(张煜), Zhiman Zhang(张芷蔓), Weiliang Wang(王伟良), Shaolin Zhang(张绍林), and Haiming Huang(黄海鸣) Quantum-mechanical understanding on structure dependence of image potentials of single-walled boron nitride nanotubes 2024 Chin. Phys. B 33 128501
|
[1] Fowler R H and Nordheim L 1928 Proc. R. Soc. Math. Phys. Eng. Sci. 119 173 [2] Charbonnier F 1996 Appl. Surf. Sci. 94-95 26 [3] Dangwal-Pandey A, Müller G, Reschke D and Singer X 2009 Phys. Rev. Spec. Top.-Accel. Beams 12 023501 [4] Crewe A V, Wall J D and Langmore J 1970 Science 168 1338 [5] Dwivedi N, Neeraj Dwivedi, Neeraj Dwivedi, Dhand C, Dhand C, Carey J D, Anderson E C, Kumar R, Srivastava A K, Srivastava A K, Srivastava A K, Srivastava A K, Malik H K, Saifullah M S M, Kumar S, Kumar S, Lakshminarayanan R, Ramakrishna S, Bhatia C S and Danner A J 2021 J. Mater. Chem. C 9 2620 [6] Li M, Shakoori M A, Wang R and Li H 2024 Chin. Phys. Lett. 41 016302 [7] Sun L, Zhai F, Cao Z, Huang X, Guo C, Wang H and Ni Y 2023 Chin. Phys. B 32 056301 [8] Huang C K, Ou Y, Bie Y Q, Zhao Q and Yu D 2011 Appl. Phys. Lett. 98 263104 [9] Zhang Q, Zhang Q, Wang X and Wang Y 2020 Inorg. Chem. Front. 7 1034 [10] Chang T H P, Kern D P, Muray L P and Muray L P 1992 J. Vac. Sci. Technol. B 10 2743 [11] He H, She J C, She J, Huang Y, Deng S Z and Xu N 2012 Nanoscale 4 2101 [12] Wang Y, Pan J A, Wu H and Talapin D V 2019 ACS Nano 13 13917 [13] Colvin V L, Schlamp M C, A. P. Alivisatos, Alivisatos A P and Alivisatos A P 1994 Nature 370 354 [14] Lin K, Xing J, Sarkar N, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L Q, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Yan Lu, Lu Y, Kirman J, Sargent E H, Xiong J, Xiong Q and Wei Z 2018 Nature 562 245 [15] Fakharuddin A, Gangishetty M K, Abdi-Jalebi M, Chin S H, Yusoff A B, Congreve D N, Tress W, Deschler F, Vasilopoulou M and Bolink H J 2022 Nat. Electron 5 203 [16] Ahmad M, Sun H and Zhu J 2011 ACS Appl. Mater. Interfaces 3 1299 [17] Grillo A, Barrat J, Barrat J, Galazka Z, Passacantando M, Ferrari A C, Giubileo F, Iemmo L, Luongo G, Urban F, Catherine Dubourdieu, Catherine Dubourdieu, Catherine Dubourdieu, Dubourdieu C and Di Bartolomeo A 2019 Appl. Phys. Lett. 114 193101 [18] Yoon I T, Cho H D, Li M, Hang N T, Hojamberdiev M and Yang W 2020 Appl. Surf. Sci. 501 144271 [19] Zhu Z Y, Sun Z, Zhou S D, Xu S, Li X, Li W, Wang L, Wong W Y, Yang W, Gao F and Chen S 2021 J. Am. Ceram. Soc. [20] Li X, Lou C, Li W, Wang L, Gao F, Shao G, Wong W Y, Chen S and Yang W 2021 ACS Appl. Mater. Interfaces 13 3062 [21] Chen J, Yang B, Lim Y D, Duan W, Zhao Y, Tay B K and Yan X 2020 Nanotechnology 31 285701 [22] Grillo A, Passacantando M, Zak A, Pelella A and Di Bartolomeo A 2020 Small 16 2002880 [23] Wu H, Shen S, Xu X, Qiao C, Chen X, Li J, Li W and Ou-Yang W 2020 IEEE Trans. Electron Devices 67 5138 [24] Chernozatonskii L A, Kosakovskaya Z Ya, Gulyaev Yu V, Sinitsyn N I, Torgashov G V and Zakharchenko Yu F 1996 J. Vac. Sci. Technol. B 14 2080 [25] Liu P, Liu P, Peng Liu, Jiang K, Wei Y, Liu X, Liu K, Liu L, Liang Liu, Fan S S and Fan S S 2010 J. Vac. Sci. Technol. B 28 736 [26] Zhang H, Li D, Li D, Wurz P, Cheng Y, Cheng Y, Wang Y, Wang C, Sun J, Li G and Fausch R 2019 Materials 12 2937 [27] Lingjie W, Zunxian Y, Jinyang L and Tai-liang G 2011 J. Semicond. 32 123001 [28] Garry S, McCarthy E, Mosnier J P and McGlynn E 2014 Nanotechnology 25 135604 [29] Chatterjee S, Kumar M, Pal A, Thakur I and Som T 2015 J. Mater. Chem. C 3 6389 [30] Kim W J, Lee J S, Lee S M, Song K Y, Song K Y, Chu C N and Kim Y H 2011 ACS Nano 5 429 [31] Lim Y D, Hu L, Xia X, Ali Z, Wang S, Tay B K, Aditya S and Miao J 2018 Nanotechnology 29 015202 [32] Powers M J, Benjamin M C, Porter L M, Nemanich R J, Davis R F, Cuomo J J, Doll G L and Harris S J 1995 Appl. Phys. Lett. 67 3912 [33] Chen Y, Zou J, Campbell S J and Le Caer G 2004 Appl. Phys. Lett. 84 2430 [34] Cumings J and Zettl A 2004 Solid State Commun. 129 661 [35] Song Y, Sun Y, Shin D H, Yun K N, Song Y H, Milne W I and Lee C J 2014 Appl. Phys. Lett. 104 163102 [36] Yun K N, Sun Y, Han J S, Song Y H and Lee C J 2017 ACS Appl. Mater. Interfaces 9 1562 [37] Karahka M and Kreuzer H J 2018 Mater. Charact. 146 319 [38] Fursey G N 2003 Appl. Surf. Sci. 215 113 [39] Blanco J M, Flores F and Pérez R 2006 Prog. Surf. Sci. 81 403 [40] Yuasa K, Shimoi A, Ohba I and Oshima C 2002 Surf. Sci. 520 18 [41] Edgcombe C J and Johansen A M 2003 J. Vac. Sci. Technol. B 21 1519 [42] Edgcombe C J 2002 Philos. Mag. B 82 1009 [43] Cutler P H, He J, Miskovsky N M, Sullivan T E and Weiss B L 1993 J. Vac. Sci. Technol. B 11 387 [44] Wang W, Peng J, Chen G, Deng S, Xu N and Li Z 2008 J. Appl. Phys. 104 034306 [45] Huang H, Li Z, Wang W and Chen G 2011 J. Vac. Sci. Technol. B 29 021802 [46] Mayer A, Chung M S, Kumar N, Weiss B L, Miskovsky N M and Cutler P H 2006 J. Vac. Sci. Technol. B 24 629 [47] Mayer A, Chung M S, Kumar N, Weiss B L, Miskovsky N M and Cutler P H 2007 J. Vac. Sci. Technol. B 25 109 [48] Geis M W, Deneault S, Krohn K E, Marchant M, Lyszczarz T M and Cooke D L 2005 Appl. Phys. Lett. 87 192115 [49] Silkin V M, Chulkov E V and Echenique P M 1999 Phys. Rev. B 60 7820 [50] Silkin V M, Zhao J, Guinea F, Chulkov E V, Echenique P M and Petek H 2009 Phys. Rev. B 80 121408 [51] Dhanabalan S C, Ponraj J S, Guo Z, Li S, Bao Q and Zhang H 2017 Adv. Sci. 4 1600305 [52] Xiaozhi Bao, Bao X, Ou Q, Xu Z Q, Zhang Y, Bao Q and Zhang H 2018 Adv. Mater. Technol. 3 1800072 [53] Sreedhar A, Hoai Ta Q T and Noh J 2023 J. Ind. Eng. Chem. 127 1 [54] Muntwiler M, Zhu X and Zhu X Y 2008 New J. Phys. 10 113018 [55] Schouteden K and Van Haesendonck C 2009 Phys. Rev. Lett. 103 266805 [56] Damm A, Schubert K, Güdde J and Höfer U 2009 Phys. Rev. B 80 205425 [57] Schubert K, Damm A, Eremeev S V, Sergey V. Eremeev, M. Marks, Marks M, Masahiro Shibuta, Shibuta M, Berthold W, Güdde J, Güdde J, Borisov A G, Tsirkin S S, Chulkov E V, Chulkov E V, Chulkov E V and Höfer U 2012 Phys. Rev. B 85 205431 [58] Silkin V M, Lazić P, Došlić N, Petek H and Gumhalter B 2015 Phys. Rev. B 92 155405 [59] David Nobis, Nobis D, Potenz M, Niesner D, Fauster Th and Fauster T 2013 Phys. Rev. B 88 195435 [60] Craes F, Runte S, Klinkhammer J, Kralj M, Michely T and Busse C 2013 Phys. Rev. Lett. 111 056804 [61] Borca B, Castenmiller C, Tsvetanova M, Sotthewes K, Rudenko A N, Zandvliet H J W and Zandvliet H J W 2020 2D Mater. 7 035021 [62] Liu X, Wang L, Yakobson B I and Hersam M C 2020 ACS Nano Lett. 21 1169 [63] Yang R and Sun M T 2023 J. Mater. Chem. C 11 6834 [64] Barca G M J, Bertoni C, Carrington L, et al. 2020 J. Chem. Phys. 152 154102 [65] Lee C T, Yang W T and Parr R G 1988 Phys. Rev. B 37 785 [66] Becke A D 1993 J. Chem. Phys. 98 5648 [67] Wang H, Yin Y, Yang X, Guo Y, Zhang Y, Yan H, Wang Y and Huai P 2022 Chin. Phys. B 31 026102 [68] Wang J S, Zeng Y Y, Zheng Z Y, Zhang L, Wang B, Yang Y Q and Sun C Q 2023 J. Phys. Chem. Lett. 14 8555 [69] Lang N D and Kohn W 1973 Phys. Rev. B 7 3541 [70] Huang H M, Ding M Q, Zhang Y, Zhang S, Ling Y Y, Wang W L and Zhang S L 2023 RSC Adv. 13 15148 [71] Mohammad Khazaei, Khazaei M, Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y and Yunoki S 2015 Phys. Rev. B 92 075411 [72] Tang N S, Yan X H and Ding J W 2005 Acta Phys. Sin. 54 333 (in Chinese) [73] Benavente Llorente V, Vázquez C I, Burgos M A, Baruzzi A M and Iglesias R A 2019 Electrochimica Acta 319 990 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|