Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 078703    DOI: 10.1088/1674-1056/23/7/078703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Image reconstruction from few views by l0-norm optimization

Sun Yu-Li (孙玉立), Tao Jin-Xu (陶进绪)
Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
Abstract  In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.
Keywords:  iterative hard thresholding      few views reconstruction      sparse      l0-norm optimization  
Received:  18 November 2013      Revised:  17 January 2014      Accepted manuscript online: 
PACS:  87.57.Q- (Computed tomography)  
  87.55.kd (Algorithms)  
Corresponding Authors:  Tao Jin-Xu     E-mail:  tjingx@ustc.edu.cn
About author:  87.57.Q-; 87.55.kd

Cite this article: 

Sun Yu-Li (孙玉立), Tao Jin-Xu (陶进绪) Image reconstruction from few views by l0-norm optimization 2014 Chin. Phys. B 23 078703

[1] Sidky E Y, Kao C M and Pan X C 2006 J. X-Ray Sci. Technol. 14 119
[2] Candes E J, Romberg J and Tao T 2006 IEEE Trans. Inform. Theory 52 489
[3] Yu H Y and Wang G 2010 J. Biomed. Imaging 2010 934847
[4] Wang L Y, Li L, Yan B, Jiang C S, Wang H Y and Bao S L 2010 Chin. Phys. B 19 088106
[5] Li S P, Wang L Y, Yan B, Li L and Liu Y J 2012 Chin. Phys. B 21 108703
[6] Zhang H M, Wang L Y, Yan B, Li L, Xi X Q and Lu L Z 2013 Chin. Phys. B 22 078701
[7] Yu H Y and Wang G 2010 Phys. Med. Biol. 55 3905
[8] Velikina J, Leng S and Chen G H 2007 Medical Imaging 2007: Physics of Medical Imaging, February 17, 2007, San Diego, CA, p. 651020
[9] Sidky E Y and Pan X C 2008 Phys. Med. Biol. 53 4777
[10] LaRoque S J, Sidky E Y and Pan X C 2008 J. Opt. Soc. Am. A 25 1772
[11] Han X, Bian J G, Ritman E L, Sidky E Y and Pan X C 2012 Phys. Med. Biol. 57 5245
[12] Duan X H, Zhang L, Xing Y X, Chen Z Q and Cheng J P 2009 IEEE Trans. Nucl. Sci. 56 1377
[13] Chen Z Q, Jin X, Li L and Wang G 2013 Phys. Med. Biol. 58 2119
[14] Feng J and Zhang J Z 2013 Int. J. Imag. Syst. Tech. 23 44
[15] Herman G T and Davidi R 2008 Inverse Probl. 24 045011
[16] Blumensath T and Davies M E 2008 J. Fourier Anal. Appl. 14 629
[17] Blumensath T and Davies M E 2009 Appl. Comput. Harmon. A 27 265
[18] Blumensath T and Davies M E 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, April 19-24, 2009, Taipei, p. 3357
[19] Blumensath T and Davies M E 2010 IEEE J. Select. Topics in Signal Process. 4 298
[20] Blumensath T 2012 Signal Process. 92 752
[21] Cevher V 2011 Proceedings of SPIE 8138 Wavelets and Sparsity XIV, September 27, 2011, San Diego, USA, p. 813811
[22] Sidky E Y, Anastasio M A and Pan X C 2010 Opt. Express 18 10404
[23] Maleki A 2009 47th Annual Allerton Conference on Communication, Control, and Computing, September 30, 2009, Monticello, USA, p. 236
[24] Zhuang T G 1992 Computed Tomography Theory and Algorithm (Shanghai: Shanghai Jiaotong University Press) p. 11 (in Chinese)
[25] Yu Z C, Noo F, Dennerlein F, Wunderlich A, Lauritsch G and Hornegger J 2012 Phys. Med. Biol. 57 N237
[1] Chaotic signal denoising algorithm based on sparse decomposition
Jin-Wang Huang(黄锦旺), Shan-Xiang Lv(吕善翔), Zu-Sheng Zhang(张足生), Hua-Qiang Yuan(袁华强). Chin. Phys. B, 2020, 29(6): 060505.
[2] Compressed sensing sparse reconstruction for coherent field imaging
Bei Cao(曹蓓), Xiu-Juan Luo(罗秀娟), Yu Zhang(张羽), Hui Liu(刘 辉), Ming-Lai Chen(陈明徕). Chin. Phys. B, 2016, 25(4): 040701.
[3] Direction-of-arrival estimation for co-located multiple-input multiple-output radar using structural sparsity Bayesian learning
Wen Fang-Qing (文方青), Zhang Gong (张弓), Ben De (贲德). Chin. Phys. B, 2015, 24(11): 110201.
[4] The co-phasing detection method for sparse optical synthetic aperture systems
Liu Zheng(刘政), Wang Sheng-Qian(王胜千), and Rao Chang-Hui(饶长辉) . Chin. Phys. B, 2012, 21(6): 069501.
[5] A Compton scattering image reconstruction algorithm based on total variation minimization
Li Shou-Peng (李守鹏), Wang Lin-Yuan (王林元), Yan Bin (闫镔), Li Lei (李磊), Liu Yong-Jun (刘拥军). Chin. Phys. B, 2012, 21(10): 108703.
[6] Denoising via truncated sparse decomposition
Xie Zong-Bo(谢宗伯) and Feng Jiu-Chao(冯久超). Chin. Phys. B, 2011, 20(5): 050504.
[7] Jointly-check iterative decoding algorithm for quantum sparse graph codes
Shao Jun-Hu(邵军虎), Bai Bao-Ming(白宝明), Lin Wei(林伟), and Zhou Lin(周林). Chin. Phys. B, 2010, 19(8): 080307.
[8] Filtering noisy chaotic signal via sparse representation based on random frame dictionary
Xie Zong-Bo(谢宗伯) and Feng Jiu-Chao(冯久超). Chin. Phys. B, 2010, 19(5): 050510.
No Suggested Reading articles found!