Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104211    DOI: 10.1088/1674-1056/abab70
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High efficient Al: ZnO based bifocus metalens in visible spectrum

Pengdi Wang(王鹏迪)1 and Xianghua Zeng(曾祥华)1,2,
1 College of Physics Science and Technology & Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, China
2 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
Abstract  

The optical components of the visible light band are widely used in daily life and industrial development. However due to the serious loss of light and the high cost, the application is limited. The broadband gap metasurface will change this situation due to its low absorption and high efficiency. Herein, we simulate a size-adjustable metasurface of the Al doped ZnO (AZO) nanorod arrays based on finite difference time domain method (FDTD) which can realize the conversion of amplitude polarization and phase in the full visible band. The corresponding theoretical polarization conversion efficiency can reach as high as 91.48% (450 nm), 95.27% (530 nm), and 91.01% (65 nm). The modulation of focusing wavelength can be realized by directly adjusting the height of the AZO nanorod. The designed half-wave plate and metalens can be applied in the imaging power modulation halfwave conversion and enriching the spectroscopy.

Keywords:  visible spectrum      Al doped ZnO      half-wave plate      metalens  
Received:  02 April 2020      Revised:  21 June 2020      Accepted manuscript online:  01 August 2020
PACS:  42.79.-e (Optical elements, devices, and systems)  
  42.79.Bh (Lenses, prisms and mirrors)  
Corresponding Authors:  Corresponding author. E-mail: xhzeng@yzu.edu.cn第一通讯作者   
About author: 
†Corresponding author. E-mail: xhzeng@yzu.edu.cn
* Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0403101).

Cite this article: 

Pengdi Wang(王鹏迪) and Xianghua Zeng(曾祥华)† High efficient Al: ZnO based bifocus metalens in visible spectrum 2020 Chin. Phys. B 29 104211

Fig. 1.  

(a) Structure of the AZO unit cell. (b) The longitudinal cross-section of the AZO unit cell with a height of H. (c) The transverse section of the AZO unit cell, where L and W represent the length and width of AZO nanorod, and Ix, Iy represent the length and width of ITO substrate. (d) Crystal axes (fast axis and low axis) coincide with Ex and Ey of the incident wave. (e) The AZO nanorod rotated by θ. (f) AZO refractive index n, k diagram.

Fig. 2.  

Polarization efficiency of the three structures, the incident light with left/right circled polarization and the transmission light with right/light circled polarization.

Fig. 3.  

Polarization conversion efficiency versus wavelength for different AZO plates: (a) AZO plates with different width W; (b) AZO plates with different length L; (c), (d) substrates with different length Ix and width Iy, respectively.

Fig. 4.  

(a) Schematic of polarity flip. (b)–(d) The relationship between the additional phase φ of the transmission field and the θ angle for samples S1 (450 nm), S2 (530 nm), and S3 (650 nm), respectively.

Structure S1 S2 S3
Length (L)/nm 45 45 45
Width (W)/nm 90 90 90
Height (H)/nm 1400 1850 2600
Ix/nm 100 100 100
Iy/nm 100 100 100
Table 1.  

Structure parameters of S1, S2, and S3.

Fig. 5.  

Schematic of metalens designed according to PB phase method: (a) 1-D metalens, (b), (c) 2-D metalens.

Fig. 6.  

The phase profiles of Ex and Ey for the three structures: (a) S1 (450 nm), (b) S2 (530 nm), (c) S3 (650 nm), where the left picture in (a)–(c) is corresponding to the one without AZO. At z = 4 μm, the retardation phase curves of Ex, Ey and their differences for (d) S1 (450 nm), (e) S2 (530 nm), (f) S3 (650 nm).

Wavelength 450 530 650
Ex (with structure)/π 20.321 17.601 14.939
Ex and Ey (without structure)/π 17.769 15.053 12.304
Ey (with structure)/π 19.125 16.446 13.802
Phase shift of Ex/π 2.552 2.548 2.635
Phase shift of Ey/π 1.356 1.393 1.498
Phase difference/π 1.196 1.155 1.137
Table 2.  

Phase shift of Ex and Ey for linearly polarized incident light at 450 nm, 530 nm, and 650 nm with respect to Figs. 6(d)6(f).

Fig. 7.  

The 1-D AZO metalens designed based on Fig. 3(a) with a total transverse length of 20 μm, with a circularly polarized incident light. (a)–(c) The diagram of power distribution in the xz plane for the S1 (450 nm), S2 (530 nm), and S3 (650 nm), respectively. (d)–(f) Normalized intensity diagrams based on the three images at z = 10 μm. (g)–(i) xz plane phase profile diagram at y = 0 μm in the xz plane.

Fig. 8.  

The intensity distribution on xz plane of 2-D metalens: (a) S1 (450 nm), (b) S2 (530 nm), (c) S3 (650 nm), the z coordinates of two focal points are marked on the graph. (d)–(i) The xy section of intensity distribution diagram at corresponding z values (marked in the upper right corner).

Fig. 9.  

(a)–(f) The normalized intensity diagram on the x-y plane at different z values corresponding to the six focal points in Figs. 8(d)8(i).

Fig. 10.  

The xz cross-section intensity distribution of 2D-metalens with the S3 structure of AZO nanorods by the PB phase method: (a) 60 × 60 AZO nanorods, (b) 40 × 40 AZO nanorods.

Structure FE of point 1 FE of point 2 NA of point 1 NA of point 2
S1 0.536 0.238 0.410 0.707
S2 0.606 0.273 0.430 0.725
S3 0.645 0.337 0.447 0.721
Table 3.  

Focusing efficiency (FE) and NA of 2D-metalen with structures (S1, S2, S3) designed by PB phase method.

[1]
Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686 DOI: 10.1126/science.1137368
[2]
Smolyaninov I I, Hung Y J, Davis C C 2007 Science 315 1699 DOI: 10.1126/science.1138746
[3]
Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190 DOI: 10.1126/science.aaf6644
[4]
Ye M, Ray V, Yi Y 2018 IEEE Photonics Technology Lett. 30 955 DOI: 10.1109/LPT.2018.2825198
[5]
Xu H, Tang S, Sun C, Li L, Liu H, Yang X, Yuan F, Sun Y 2018 Photonics Research 6 782 DOI: 10.1364/PRJ.6.000782
[6]
Li L, Zhang X, Song C, Huang Y 2020 Appl. Phys. Lett. 116 060501 DOI: 10.1063/1.5140966
[7]
Zhang J, Tian Y, Cheng Y, Liu X 2020 Appl. Phys. Lett. 116 030501 DOI: 10.1063/1.5132629
[8]
Fehrenbacher M, Winnerl S, Schneider H, Doring J, Kehr S C, Eng L M, Huo Y, Schmidt O G, Yao K, Liu Y, Helm M 2015 Nano Lett. 15 1057 DOI: 10.1021/nl503996q
[9]
Guo L, Xu S, Wan R, Li T, Xiong L, Wang L, Zhu W 2018 J. Nanophoton. 12 1
[10]
Chen B H, Wu P C, Su V C, Lai Y C, Chu C H, Lee I C, Chen J W, Chen Y H, Lan Y C, Kuan C H 2017 Nano Lett. 17 6345 DOI: 10.1021/acs.nanolett.7b03135
[11]
Kelly P, Liu M, Kuznetsova L 2016 Appl. Opt. 55 2993 DOI: 10.1364/AO.55.002993
[12]
Masouleh F F, Sinno I, Buckley R G, Gouws G, Moore C P 2018 Appl. Phys. A 124 178 DOI: 10.1007/s00339-018-1602-9
[13]
Li X, Jiao L, Xu H, Lu Y, Zhu C, Duan J, Zhang X, Dai N, Song W 2016 Optical Materials Express 6 3892 DOI: 10.1364/OME.6.003892
[14]
Pepe Y, Yildirim M A, Karatay A, Ates A, Unver H, Elmali A 2019 Optical Materials 98 109495 DOI: 10.1016/j.optmat.2019.109495
[15]
Shah A, Ahmad M, Rahmanuddin, Khan S, Aziz U, Ali Z, Khan A, Mahmood A 2019 Appl. Phys. A 125 713 DOI: 10.1007/s00339-019-3005-y
[16]
Hakan Karaagac E Y, Islam M S 2012 J. Alloys Compd. 51 155
[17]
Naik G V, Liu J, Kildishev A V, Shalaev V M, Boltasseva A 2011 Appl. Phys. B 103 553 DOI: 10.1007/s00340-011-4468-5
[18]
Berry M V 1987 J. Modern Opt. 34 1401 DOI: 10.1080/09500348714551321
[19]
Xu H X, Liu H, Ling X, Sun Y, Yuan F 2017 IEEE Trans. Antennas Propaga. 65 7378
[20]
Zhang J L, Lan X, Zhang C, Liu X Y, He F T 2020 Optik 204 163852 DOI: 10.1016/j.ijleo.2019.163852
[21]
Kargar R, Rouhi K, Abdolali A 2020 Opt. Commun. 462 125331 DOI: 10.1016/j.optcom.2020.125331
[22]
An G, Li S, Yan X, Yuan Z, Zhang X 2016 Appl. Opt. 55 1262 DOI: 10.1364/AO.55.001262
[23]
Guo L, Hu Z, Wan R, Long L, Li T, Yan J, Lin Y, Zhang L, Zhu W, Wang L 2018 Nanophotonics 7 1651 DOI: 10.1515/nanoph-2018-0074
[24]
Liu Z, Li Z, Liu Z, Cheng H, Liu W, Tang C, Gu C, Li J, Chen H T, Chen S 2017 ACS Photonics 4 2061 DOI: 10.1021/acsphotonics.7b00491
[25]
Wang W, Guo C, Zhao Z, Li J, Shi Y 2020 Results in Physics 17 103033 DOI: 10.1016/j.rinp.2020.103033
[26]
Xu H.X, Hu G, Li Y, Han L, Zhao J, Sun Y et al. 2019 Light Sci. Appl. 8 3 DOI: 10.1038/s41377-018-0113-y
[27]
Xu H, Han L, Li Y, Sun Y, Zhao J, Zhang S, Qiu C 2019 ACS Photonics 6 211 DOI: 10.1021/acsphotonics.8b01439
[28]
Khorasaninejad M, Capasso F 2017 Science 358 eaam8100 DOI: 10.1126/science.aam8100
[29]
Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220 DOI: 10.1038/s41565-017-0034-6
[30]
Yang Q, Gu J, Xu Y, Zhang X, Li Y, Ouyang C, Tian Z, Han J, Zhang W 2017 Adv. Opt. Mater. 5 1601084 DOI: 10.1002/adom.201601084
[31]
Aieta F, Genevet P, Kats M, Capasso F 2013 Opt. Express 21 31530 DOI: 10.1364/OE.21.031530
[32]
Liang H, Lin Q, Xie X, Sun Q, Wang Y, Zhou L, Liu L, Yu X, Zhou J, Krauss T F, Li J 2018 Nano Lett. 18 4460 DOI: 10.1021/acs.nanolett.8b01570
[33]
Chen W T, Zhu A Y, Khorasaninejad M, Shi Z, Sanjeev V, Capasso F 2017 Nano Lett. 17 3188 DOI: 10.1021/acs.nanolett.7b00717
[34]
Lu D, Liu Z 2012 Nat. Commun. 3 1160 DOI: 10.1038/ncomms2170
[1] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[2] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[3] A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop
Ruan Juan (阮隽), Zhang Wei-Gang (张伟刚), Zhang Hao (张昊), Geng Peng-Cheng (耿鹏程), Bai Zhi-Yong (白志勇). Chin. Phys. B, 2013, 22(6): 064216.
No Suggested Reading articles found!