INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Analytically determining frequency and amplitude of spontaneous alpha oscillation in Jansen's neural mass model using the describing function method |
Yao Xu(徐瑶)1,2, Chun-Hui Zhang(张春会)1, Ernst Niebur3, Jun-Song Wang(王俊松)1 |
1. School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China;
2. Qingdao Stomatological Hospital, Department of Medical Technology Equipment, Qingdao 266001, China;
3. Zanvyl Krieger Mind/Brain Institute and Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore 21218, MD, USA |
|
|
Abstract Spontaneous alpha oscillations are a ubiquitous phenomenon in the brain and play a key role in neural information processing and various cognitive functions. Jansen's neural mass model (NMM) was initially proposed to study the origin of alpha oscillations. Most of previous studies of the spontaneous alpha oscillations in the NMM were conducted using numerical methods. In this study, we aim to propose an analytical approach using the describing function method to elucidate the spontaneous alpha oscillation mechanism in the NMM. First, the sigmoid nonlinear function in the NMM is approximated by its describing function, allowing us to reformulate the NMM and derive its standard form composed of one nonlinear part and one linear part. Second, by conducting a theoretical analysis, we can assess whether or not the spontaneous alpha oscillation would occur in the NMM and, furthermore, accurately determine its amplitude and frequency. The results reveal analytically that the interaction between linearity and nonlinearity of the NMM plays a key role in generating the spontaneous alpha oscillations. Furthermore, strong nonlinearity and large linear strength are required to generate the spontaneous alpha oscillations.
|
Received: 01 November 2017
Revised: 07 January 2018
Accepted manuscript online:
|
PACS:
|
87.10.-e
|
(General theory and mathematical aspects)
|
|
87.18.Sn
|
(Neural networks and synaptic communication)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61473208), the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCYBJC47700), the National Institutes of Health, USA (Grant Nos. R01DA040990 and R01EY027544), and the Project of Humanities and Social Sciences from the Ministry of Education, China (Grant No. 17YJAZH092). |
Corresponding Authors:
Jun-Song Wang
E-mail: wjsong2004@126.com
|
Cite this article:
Yao Xu(徐瑶), Chun-Hui Zhang(张春会), Ernst Niebur, Jun-Song Wang(王俊松) Analytically determining frequency and amplitude of spontaneous alpha oscillation in Jansen's neural mass model using the describing function method 2018 Chin. Phys. B 27 048701
|
[1] |
Berger H 1929 European Archives of Psychiatry and Clinical Neuroscience 87 527
|
[2] |
Klimesch W 2012 Trends Cogn. Sci. 16 606
|
[3] |
Wang J S, Wang M L, Li X L and Niebur E 2015 Chin. Phys. B 24 038701
|
[4] |
Jensen O and Bonnefond M 2013 Trends Cogn. Sci. 17 10
|
[5] |
Samaha J, Bauer P, Cimaroli S and Postle B R 2015 Proc. Natl. Acad. Sci. 112 8439
|
[6] |
Haegens S, Händel B F and Jensen O 2011 J. Neurosci. 31 5197
|
[7] |
Sauseng P 2012 Current Biology 22 R306
|
[8] |
Payne L, Guillory S and Sekuler R 2013 Journal of Cognitive Neuroscience 25 1463
|
[9] |
Brinkman L, Stolk A, Dijkerman H C, de Lange F P and Toni I 2014 J. Neurosci. 34 14783
|
[10] |
Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud A L, D'Esposito M and Kleinschmidt A 2012 J. Neurosci. 32 14305
|
[11] |
Haegens S, Nácher V, Luna R, Romo R and Jensen O 2011 Proc. Natl. Acad. Sci. 108 19377
|
[12] |
Neuling T, Rach S, Wagner S, Wolters C H and Herrmann C S 2012 Neuroimage 63 771
|
[13] |
Palva S and Palva J M 2007 Trends in Neurosciences 30 150
|
[14] |
Foxe J J and Snyder A C 2011 Frontiers in Psychology 2 154
|
[15] |
Buchholz V N, Jensen O and Medendorp W P 2014 Frontiers in Human Neuroscience 8 446
|
[16] |
Lou B, Li Y, Philiastides M G and Sajda P 2014 NeuroImage 87 242
|
[17] |
Strauss A, Kotz S A, Scharinger M and Obleser J 2014 Neuroimage 97 387
|
[18] |
Spaak E, de Lange F P and Jensen O 2014 J. Neurosci. 34 3536
|
[19] |
Roux F and Uhlhaas P J 2014 Trends Cogn. Sci. 18 16
|
[20] |
Hindriks R and van Putten M J 2013 Neuroimage 70 150
|
[21] |
Hindriks R, Woolrich M, Luckhoo H, Joensson M, Mohseni H, Kringelbach M and Deco G 2015 NeuroImage 106 328
|
[22] |
Becker R, Knock S, Ritter P and Jirsa V 2015 PLoS Comput. Biol 11 e1004352
|
[23] |
Mayhew S D, Ostwald D, Porcaro C and Bagshaw A P 2013 Neuroimage 76 362
|
[24] |
Bhattacharya B S, Coyle D and Maguire L P 2011 Neural Networks 24 631
|
[25] |
Wang J, Niebur E, Hu J and Li X 2016 Sci. Rep. 6 27344
|
[26] |
Gerstner W, Sprekeler H and Deco G 2012 Science 338 60
|
[27] |
Grimbert F and Faugeras O 2006 Neural Comput. 18 3052
|
[28] |
Spiegler A, Kiebel S J, Atay F M and Knösche T R 2010 Neuroimage 52 1041
|
[29] |
Goodfellow M, Schindler K and Baier G 2012 NeuroImage 59 2644
|
[30] |
Nevado-Holgado A J, Marten F, Richardson M P and Terry J R 2012 Neuroimage 59 2374
|
[31] |
Touboul J, Wendling F, Chauvel P and Faugeras O 2011 Neural Comput. 23 3232
|
[32] |
Bhattacharya B S, Cakir Y, Serap-Sengor N, Maguire L and Coyle D 2013 Neurocomputing 115 11
|
[33] |
Da Silva F L, Van Lierop T, Schrijer C and Van Leeuwen W S 1973 Electroencephalography and Clinical Neurophysiology 35 627
|
[34] |
Da Silva F L, Hoeks A, Smits H and Zetterberg L 1974 Kybernetik 15 27
|
[35] |
Babajani-Feremi A and Soltanian-Zadeh H 2010 Neuroimage 52 793
|
[36] |
Jansen B H and Rit V G 1995 Biological Cybernetics 73 357
|
[37] |
Hindriks R, Bijma F, van Dijk B, van der Werf Y D, van Someren E J and van der Vaart A 2011 Neuroimage 57 440
|
[38] |
Ursino M, Cona F and Zavaglia M 2010 NeuroImage 52 1080
|
[39] |
Jansen B H, Zouridakis G and Brandt M E 1993 Biological Cybernetics 68 275
|
[40] |
van Rotterdam A, Da Silva F L, Van den Ende J, Viergever M and Hermans A 1982 Bull. Math. Biol. 44 283
|
[41] |
Franklin G F, Powell J D and Emami-Naeini A 1994 Feedback control of dynamics systems, 6th edn. (New Jersey:Pearson Higher Education) pp. 157-175
|
[42] |
De Paor A M and Lowery M M 2009 Ieee. T. Bio-med. Eng. 56 2717
|
[43] |
Shayegh F, Bellanger J J, Sadri S, Amirfattahi R, Ansari-Asl K and Senhadji L 2013 Journal of Medical Signals and Sensors 3 2
|
[44] |
Davidson C M, de Paor A M and Lowery M M 2014 IEEE T. Bio-med. Eng. 61 957
|
[45] |
Hu S S 2007 Automatic Control Principle, 5th edn. (Beijing:Science Press) (in Chinese)
|
[46] |
Siegel M, Donner T H and Engel A K 2012 Nat. Rev. Neurosci. 13 121
|
[47] |
Vicente R, Gollo L L, Mirasso C R, Fischer I and Pipa G 2008 Proc. Natl. Acad. Sci. USA 105 17157
|
[48] |
Guo D Q, Wang Q Y and Perc M 2012 Phys. Rev. E 85 061905
|
[49] |
Chacron M J, Longtin A and Maler L 2005 Phys. Rev. E 72 051917
|
[50] |
Guo D Q, Wu S D, Chen M M, Matjaž P, Zhang Y S, Ma J L, Cui Y, Xu P, Xia Y and Yao D Z 2016 Sci. Rep. 6 26096
|
[51] |
Guo D Q, Chen M M, Perc M, Wu S D, Xia C, Zhang Y S, Xu P, Xia Y and Yao D Z 2016 Europhys. Lett. 114 30001
|
[52] |
Guo X, Yu H, Wang J, Liu J, Cao Y and Deng B 2017 Physica A:Statistical Mechanics & Its Applications 482 308
|
[53] |
Buzsáki G and Schomburg E W 2015 Nat. Neurosci. 18 484
|
[54] |
TP V, K R and LF A 2005 Ann. Rev. Neurosci. 28 357
|
[55] |
Chen M M, Guo D, Li M, Ma T, Wu S, Ma J, Cui Y, Xia Y, Xu P and Yao D 2015 PLoS Comput. Biol. 11 e1004539
|
[56] |
Chen M M, Guo D Q, Wang T B, Jing W, Xia Y, Xu P, Luo C, Valdessosa P A and Yao D 2014 PLoS Comput. Biol. 10 e1003495
|
[57] |
Chen M M, Guo D Q, Yang X and Yao D Z 2017 Frontiers in Computational Neuroscience 11 31
|
[58] |
Xia X F and Wang J S 2014 Acta Phys. Sin. 63 140503(in Chinese)
|
[59] |
Lytton W W 2008 Nat. Rev. Neurosci. 9 626
|
[60] |
Mccarthy M M, Moorekochlacs C, Gu X, Boyden E S, Han X and Kopell N 2011 Proc. Natl. Acad. Sci. USA 108 11620
|
[61] |
Wang M L and Wang J S 2015 Acta Phys. Sin. 64 108701(in Chinese)
|
[62] |
Grant G and Ernst N 2016 PLoS Comput. Biol. 12 e1005121
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|