|
|
Low-order harmonic generation of hydrogen molecular ion in laser field studied by the two-state model |
Ling-Ling Du(杜玲玲), Guo-Li Wang(王国利), Peng-Cheng Li(李鹏程), Xiao-Xin Zhou(周效信) |
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract The low-order harmonic generation of hydrogen molecular ion interacting with a linearly polarized laser field has been investigated theoretically by using a simple two-state model. The validity of the two-state model is carefully examined by comparing the harmonic spectra of hydrogen molecular ion obtained from this model with those from the three-dimensional time-dependent Schrödinger equation. When combined with the Morlet transform of quantum time-frequency spectrum, the two-state model can be used to study the dynamical origin of the low-order harmonic generation of hydrogen molecular ion driven by low-frequency pulses. In addition, some interesting structures of the time profiles for low order harmonics are obtained.
|
Received: 18 July 2018
Revised: 27 August 2018
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11465016, 11674268, and 11764038). |
Corresponding Authors:
Ling-Ling Du, Xiao-Xin Zhou
E-mail: dull2014@163.com;zhouxx@nwnu.edu.cn
|
Cite this article:
Ling-Ling Du(杜玲玲), Guo-Li Wang(王国利), Peng-Cheng Li(李鹏程), Xiao-Xin Zhou(周效信) Low-order harmonic generation of hydrogen molecular ion in laser field studied by the two-state model 2018 Chin. Phys. B 27 113201
|
[1] |
Zhai Z, Zhu Q, Chen J, Yan Z C, Fu P and Wang B 2011 Phys. Rev. A 83 043409
|
[2] |
Wang G L, Jin C, Le A T and Lin C D 2012 Phys. Rev. A 86 015401
|
[3] |
Wang L, Wang G L, Jiao Z H, Zhao S F and Zhou X X 2018 Chin. Phys. B 27 073205
|
[4] |
Du L L, Li P C and Zhou X X 2017 Phys. Lett. A 381 2521
|
[5] |
Jin C and Lin C D 2012 Phys. Rev. A 85 033423
|
[6] |
Ciappina M F, Pérez-Hernández J A, LandsmanA S, Okell W A, Zherebtsov S, Förg B, Schötz J, Seiffert L, Fennel T, Shaaran T, Zimmermann T, Chacón A, Guichard R, Zaïr A, Tisch J W G, Marangos J P, Witting T, Braun A, Maier S A, Roso L, Krüger M, Hommelhoff P, Kling M F, Krausz F and Lewenstein M 2017 Rep. Prog. Phys. 80 054401
|
[7] |
Feng L Q 2015 Phys. Rev. A 92 053832
|
[8] |
Jiang S C, Chen J G, Wei H, Yu C, Lu R F and Lin C D 2018 Phys. Rev. Lett. 120 253201
|
[9] |
Wu J S, Jia Z M and Zeng Z N 2017 Chin. Phys. B 26 093201
|
[10] |
Pan Y, Zhao S F and Zhou X X 2013 Phys. Rev. A 87 035805
|
[11] |
Zhong H Y, Guo J, Zhang H D, Du H and Liu X S 2015 Chin. Phys. B 24 073202
|
[12] |
Wu J S, Jia Z M and Zeng Z N 2017 Chin. Phys. B 26 093201
|
[13] |
Guo Q L, Li P C, Zhou X X and Chu S I 2018 Opt. Commun. 410 262
|
[14] |
Power E P, March A M, Catoire F, Sistrunk E, Krushelnick K, Agostini P and DiMauro L F 2010 Nat. Photon. 4 352
|
[15] |
Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B and Schafer K J 2009 Nat. Phys. 5 815
|
[16] |
Hostetter J A, TatE J L, Schafer K J and Gaarde M B 2010 Phys. Rev. A 82 023401
|
[17] |
Xiong W H, Geng J W, Tang J Y, Peng L Y and Gong Q H 2014 Phys. Rev. Lett. 112 233001
|
[18] |
Brizuela F, Heyl C M, Rudawski P, Kroon D, Rading L, Dahlstrom J M, Mauritsson J, Johnsson P, Arnold C L and LHuillier A 2013 Sci. Rep. 3 1410
|
[19] |
Xiong W H, Gong Q H and Peng L Y 2017 Phys. Rev. A 96 023421
|
[20] |
Li W B, Deng M X and Xiang Y X 2017 Chin. Phys. B 26 114302
|
[21] |
Avanaki K N, Telnov D A, Jooya H Z and Chu S I 2015 Phys. Rev. A 92 063811
|
[22] |
Soifer H, Botheron P, Shafir D, Diner A, Raz O, Bruner B D, Mairesse Y, Pons B and Dudovich N 2010 Phys. Rev. Lett. 105 143904
|
[23] |
Chini M, Wang X, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I and Chang Z 2014 Nat. Photon. 8 437
|
[24] |
Spott A, Becker A and Jaroń-Becker A 2015 Phys. Rev. A 91 023402
|
[25] |
Du L L, Wang G L, Li P C, Zhou X X and Zhao Z X 2018 Phys. Rev. A 97 023404
|
[26] |
Ivanov M and Smirnova O 2013 Chem. Phys. 414 3
|
[27] |
Kawata I, Kono H and Fujimura Y 1999 J. Chem. Phys. 110 11152
|
[28] |
Piazza A D and Fiordilino E 2001 Phys. Rev. A 64 013414
|
[29] |
Kim H, Park J R and Lee H W 2000 J. Phys. B:At. Mol. Opt. Phys. 33 1703
|
[30] |
Huang P, Xie X T, Lü X, Li J and Yang X 2009 Phys. Rev. A 79 043806
|
[31] |
Figueira de Morisson Faria C and Rotter I 2003 Laser Phys. 13 985
|
[32] |
Figueira de Morisson Faria C 2002 Phys. Rev. A 66 013402
|
[33] |
Zhang B, Yuan J M and Zhao Z X 2012 Phys. Rev. A 85 033421
|
[34] |
Tao L, McCurdy C W and Rescigno T N 2009 Phys. Rev. A 79 012719
|
[35] |
Tong X M and Chu Shih I 2000 Phys. Rev. A 61 021802(R)
|
[36] |
Antoine P, Piraux B and Maquet A 1995 Phys. Rev. A 51 R1750
|
[37] |
Gaarde M B, Antoine P, L0 Huillier A, Schafer K J and Kulander K C 1998 Phys. Rev. A 57 4553
|
[38] |
Slepyan G Y, Maksimenko S A, Kalosha V P, Gusakov A V and Herrmann J 2001 Phys. Rev. A 63 053808
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|