CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Plasmonic microcavity formed by the Möbius strip |
Yang Zeng(曾扬), Zhi-Yong Wang(王智勇), Yuan Wu(吴远), Lan-Song Lu(陆兰松), Yun-Xiang Wang(王云祥), Shuang-Jin Shi(史双瑾), Qi Qiu(邱琪) |
School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract We propose a Möbius-strip-type plasmonic cavity with a silver Möbius strip sandwiched between dielectric layers. By brief theoretical and simulation analyses, we obtain that the Q factor of the cavity remains about 40 and the mode volume is ultrasmall (less than 1 μm3) which is more compact than that of the cylindric cavity. This Möbius-strip-type plasmonic cavity supporting the propagation of surface plasmon polaritons owns some unusual properties such as more effective volume and the spatial separation. More potential applications based on this cavity remain to be explored in future nanophotonics.
|
Received: 17 August 2016
Revised: 03 December 2016
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 61271030 and 61308041) and the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2014J043). |
Corresponding Authors:
Yang Zeng
E-mail: 201422050125@std.uestc.edu.cn
|
Cite this article:
Yang Zeng(曾扬), Zhi-Yong Wang(王智勇), Yuan Wu(吴远), Lan-Song Lu(陆兰松), Yun-Xiang Wang(王云祥), Shuang-Jin Shi(史双瑾), Qi Qiu(邱琪) Plasmonic microcavity formed by the Möbius strip 2017 Chin. Phys. B 26 037303
|
[1] |
Vahala K J 2003 Nature 424 839
|
[2] |
Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
|
[3] |
Mabuchi H, Turchette Q A, Chapman M S and Kimble H J 1996 Opt. Lett. 21 1393
|
[4] |
Yamamoto Y, Tassone F and Cao H 2000 Semiconductor Cavity Quantum Electrodynamics (New York: Springer)
|
[5] |
Deppe D G, Huffaker D L, Oh T O, Deng H Y and Deng Q 1997 IEEE J. Select. Top. Quantum Elect. 3 893
|
[6] |
Cooper M A 2002 Nat. Rev. Drug Discov. 1 515
|
[7] |
Vollmer F and Arnold S 2008 Nature Methods 5 591
|
[8] |
Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phys. Rev. Lett. 95 257403
|
[9] |
Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
|
[10] |
Weeber J C, Bouhelier A, Colas des Francs G, Markey L and Dereux A 2007 Nano Lett. 7 1352
|
[11] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[12] |
Pacifici D, Lezec H J and Atwater H A 2007 Nat. Photon. 1 402
|
[13] |
Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X and Vahala K 2009 Nature 457 455
|
[14] |
Kuttge M, García de Abajo F J and Polman A 2010 Nano Lett. 10 1537
|
[15] |
Xiao Y F, Zou C J, Li B B, Li Y, Dong C H, Han Z F and Gong Q 2010 Phys. Rev. Lett. 105 153902
|
[16] |
Kwon S H, Kang J H, Seassal C, Kim S K, Regreny P, Lee Y H, Lieber C M and Park H G 2010 Nano Lett. 10 3679
|
[17] |
https://en.wikipedia.org/wiki/M%C3%B6bius_strip
|
[18] |
Richard D (U.S. Patent) 3 267 406 [1966-8-16]
|
[19] |
Perez-Enriquez R 2002 Rev. Mex. Fis. 48 (supplement 1) 262
|
[20] |
Yamashiro A, Shimoi Y, Harigaya K and Wakabayashi K 2004 Physica E 22 688
|
[21] |
Xiao Y F, Li B B, Jiang X, Hu X Y, Li Y and Gong Q H 2010 J. Phys. B 43 035402
|
[22] |
Zou C L, Xiao Y, Han Z, Dong C, Chen X, Cui J, Guo G and Sun F 2010 J. Opt. Soc. Am. B 27 2495
|
[23] |
Yakubo K, Avishai Y and Cohen D 2003 Phys. Rev. B 67 125319
|
[24] |
Lumerical Solutions http://www.lumerical.com/fdtd.php
|
[25] |
Palik E 1985 Handbook of Optical Constants of Solids (Academic)
|
[26] |
Yao Q F, Huang Y Z, Zou L X, Lv X M, Ling J D and Yang Y D 2013 J. Lightwave Technol. 31 786
|
[27] |
Gartia M R, Lu M and Liu G L 2013 Plasmonics 8 361
|
[28] |
Rottler A, Bröll M, Schwaiger S, Heitmann D and Mendach S 2011 Opt. Lett. 36 1240
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|