Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 018105    DOI: 10.1088/1674-1056/26/1/018105
Special Issue: TOPICAL REVIEW — Amorphous physics and materials
TOPICAL REVIEW—Amorphous physics and materials Prev   Next  

Universal properties of relaxation and diffusion in condensed matter

K L Ngai(倪嘉陵)1,2
1. CNR-IPCF, Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy;
2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Abstract  

By and large the research communities today are not fully aware of the remarkable universality in the dynamic properties of many-body relaxation/diffusion processes manifested in experiments and simulations on condensed matter with diverse chemical compositions and physical structures. I shall demonstrate the universality first from the dynamic processes in glass-forming systems. This is reinforced by strikingly similar properties of different processes in contrasting interacting systems all having nothing to do with glass transition. The examples given here include glass-forming systems of diverse chemical compositions and physical structures, conductivity relaxation of ionic conductors (liquid, glassy, and crystalline), translation and orientation ordered phase of rigid molecule, and polymer chain dynamics. Universality is also found in the change of dynamics when dimension is reduced to nanometer size in widely different systems. The remarkable universality indicates that many-body relaxation/diffusion is governed by fundamental physics to be unveiled. One candidate is classical chaos on which the coupling model is based, Universal properties predicted by this model are in accord with diverse experiments and simulations.

Keywords:  many-body relaxation/diffusion      universal dynamics      coupling model      classical chaos  
Received:  09 October 2016      Revised:  08 December 2016      Accepted manuscript online: 
PACS:  81.05.Kf (Glasses (including metallic glasses))  
  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  89.75.-k (Complex systems)  
Corresponding Authors:  K L Ngai     E-mail:  Kia.Ngai@pi.ipcf.cnr.it

Cite this article: 

K L Ngai(倪嘉陵) Universal properties of relaxation and diffusion in condensed matter 2017 Chin. Phys. B 26 018105

[1] Einstein A 1905 Ann. D. Physik 17 549
[2] Brown R 1828 Philos. Mag. 4 161
[3] Lichtenberg A L and Lieberman M A 1992 Regular and Chaotic Dynamics (New York:Springer)
[4] Berry M V 1987 Proc. R. Soc. Lond. A 413 183
[5] Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York:Springer)
[6] Ngai K L 1979 Comment Solid State Phys. 9 127
[7] Tsang K Y and Ngai K L 1996 Phys. Rev. E 54 R3067
[8] Tsang K Y and Ngai K L 1997 Phys. Rev. E 56 R17
[9] Rendell R W 1993 Phys. Rev. E 48 R17
[10] Ngai K L and Tsang K Y 1999 Phys. Rev. E 60 4511
[11] Ngai K L 2011 Relaxation and Diffusion in Complex System (New York:Springer)
[12] Habasaki J, Leon C and Ngai K L 2016 Dynamics of Glassy, Crystalline, and Liquid Ionic Conductors (New York:Springer)
[13] Bedrov D and Smith G D 2011 J. Non-Cryst. Solids 357 258
[14] Mattsson J, Wyss H M, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman D R and Weitz D A 2009 Nature 462 83
[15] Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Sharifi S and Rolla P A 2008 J. Phys. Chem. B 112 4470
[16] Ferry J D 1980 Viscoelastic Properties of Polymers, 3rd ed., (New York:Wiley)
[17] Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139
[18] Götze W 1999 J. Phys.:Condens. Matter 11 A1
[19] Götze W 2009 Complex Dynamics of Glass-Forming Liquids, International Series of Monographs on Physics 143, Oxford Science Publications, Oxford (2009)
[20] Stevenson J D and Wolynes P G 2011 J. Phys. Chem. A 115 3713
[21] Ngai K L, Casalini R, Capaccioli S, Paluch M and Roland C M 2005 J. Phys. Chem. B 109 17356
[22] Mierzwa M, Pawlus S, Paluch M, Kaminska E and Ngai K L 2008 J. Chem. Phys. 128 044512
[23] Capaccioli S, Paluch M, Prevosto D, Wang L M and Ngai K L 2012 J. Phys. Chem. Lett. 3 735
[24] Jarosz G, Mierzwa M, Ziolo J, Paluch M, Shirota H and Ngai K L 2011 J. Phys. Chem. B 115 12709
[25] Roland C M, Hensel-Bielowka S, Paluch M and Casalini R 2005 Rep. Prog. Phys. 68 1405
[26] Floudas G, Paluch M, Grzybowski A and Ngai K L 2011 Molecular Dynamics of Glass-Forming Systems:Effects of Pressure (Berlin:Springer-Verlag)
[27] Ngai K L 1998 J. Chem. Phys. 109 6982
[28] Ngai K L and Paluch M 2004 J. Chem. Phys. 120 857
[29] Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372
[30] Johari G P 1976 Ann. N Y Acad. Sci. 279 117
[31] Ngai K L 2003 J. Phys.:Condens. Matter 15 S1107
[32] Brand R, Lunkenheimer P and Loidl A 2002 J. Chem. Phys. 116 10386
[33] Romanini M, Negrier Ph, Ll. Tamarit J, Capaccioli S, Barrio M, Pardo L C and Mondieig D 2012 Phys. Rev. B 85 134201
[34] Ngai K L and Capaccioli S 2013 J. Chem. Phys. 138 054903
[35] Yu H B, Wang W H, Bai H Y and Samwer K 2014 National Science Review 1 429
[36] Yu H B, Shen X and Wang Z 2012 Phys. Rev. Lett. 108 015504
[37] Qiao J and Pelletier J M 2012 J. Appl. Phys. 112 083528
[38] Zhu Z G, Li Y Z, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K L and Wang W H 2014 J. Chem. Phys. 141 084506
[39] Brás A R, Noronha J P, Antunes A M M, Cardoso M M, Schönhals A, Affouard F, Dionísio M and Correia N T 2008 J. Phys. Chem. B 112 11087
[40] Kaminski K, Kaminska E, Wlodarczyk P, Pawlus S, Kimla D, Kasprzycka A, Paluch M, Ziolo J, SzejaWand Ngai K L 2006 J. Phys. Chem. B 110 25045
[41] Kaminski K, Kaminska E, Wlodarczyk P, Pawlus S, Kimla D, Kasprzycka A, Paluch M, Ziolo J, SzejaW and Ngai K L 2008 J. Phys. Chem. B 112 12816
[42] Capaccioli S, Ngai K L and Shinyashiki N 2007 J. Phys. Chem. B 111 8197
[43] Ngai K L, Capaccioli S, Ancherbak S and Shinyashiki N 2011 Philos. Mag. 91 1809
[44] Shinyashiki N, Yamamoto W, Yokohama A, Toshihari T, Yagihara S, Kita R, Ngai K L and Capaccioli S 2009 J. Phys. Chem. B 113 14448
[45] Ngai K L, Capaccioli S and Paciaroni A 2013 Chem. Phys. 424 37
[46] Ngai K L, Capaccioli S and Paciaroni A 2016 Biochim. Biophys. Acta
[47] Ngai K L, Habasaki J, Prevosto D, Capaccioli D and Paluch M 2012 J. Chem. Phys. 137 034511
[48] Coslovich D and Roland C M 2008 J. Phys. Chem. B 112 1329
[49] Anastasiadis S H, Karatasos K, Vlachos G, Manias E and Giannelis E P 2000 Phys. Rev. Lett. 84 915
[50] Ngai K L 2002 Philos. Mag. 82 291
[51] Ngai K L 2002 Eur. Phys. J. E 8 225
[52] Ngai K L 2006 J. Polym. Sci. B:Polym. Phys. 44 2980
[53] Patkowski A, Ruths T and Fischer E W 2003 Phys. Rev. E 67 021501
[54] Ngai K L 1999 J. Phys.:Condens. Matter 11 A119
[55] Schönhals A, Goering H, Schick Ch, Frick B and Zorn R 2004 Colloid Polym. Sci. 282 882
[56] Schönhals A, Goering H, Schick Ch, Frick B and Zorn R 2005 J. Non-Cryst.Solids 351 2668
[57] Beiner M and Huth H 2003 Nat. Mater. 2 595
[58] Ngai K L and Beiner M 2004 Macromolecules 37 8123
[59] Beiner M 2006 AIP Conf. Proc. 832 134
[60] Zhu L, Brian C W, Swallen S F, Straus P T, Ediger M D and Yu L 2011 Phys. Rev. Lett. 106 256103
[61] Capaccioli S, Ngai K L, Paluch M and Prevosto D 2012 Phys. Rev. E 86 051503
[62] Zhang W, Brian C W and Yu L 2015 J. Phys. Chem. B 119 5071
[63] Cao C R, Lu Y M, Bai H Y and Wang H W 2015 Appl. Phys. Lett. 107 141606
[64] Teichler H 1996 Phys. Rev. Lett. 76 62
[65] Han X J and Schober H R 2011 Phys. Rev. B 83 224201
[66] Ngai K L, Capaccioli S, Cao C R, Bai H Y and Wang H W, to be published.
[67] Bokeloh J, Divinski S V, Reglitz G and Wilde G 2011 Phys. Rev. Lett. 107 235503
[68] Ngai K L and Yu H B 2013 J. Appl. Phys. 113 103508
[69] Ngai K L, Santamaria J and Leon C 2013 Euro. Phys. J. B 86 7
[70] Kosacki I, Rouleau C M, Becher P F, Bentley J and Lowndes D H 2005 Solid State Ionics 176 1319
[71] Plazek D J and O'Rourke V M 1971 J. Polym. Sci. A 9 209
[72] Gray R W, Harrison G and Lamb J 1977 Proc. R. Soc. London A 356 77
[73] Plazek D J 1980 Polymer J. 12 43
[74] Plazek D J 1996 J. Rheology 40 987
[75] Ngai K L and Plazek D J 1995 Rubber Chem. Technol. Rubber Rev. 68 376
[76] McKenna G B, Ngai K L and Plazek D J 1985 Polymer 26 1651
[77] Plazek D L and Plazek D J 1983 Macromolecules 16 1469
[78] Ngai K L and Fytas G 1986 J. Polym. Sci. B:Polym. Phys. 24 1683
[79] Floudas G, Gravalides C, Reisinger T G and Wegner J 1999 Chem. Phys. 111 9847
[80] Floudas G 2004 Prog. Polym. Sci. 29 1143
[81] Ngai K L and Plazek D J 1986 J. Polym. Sci. B:Polym. Phys. 24 619
[82] Ngai K L, Plazek D J and Deo S S 1987 Macromolecules 20 3047
[83] Plazek D J, Bero C, Neumeister S, Floudas G, Fytas G and Ngai K L 1994 J. Colloid Polymer Sci. 272 1430
[84] Plazek D J, Schönhals A, Schlosser E and Ngai K L 1993 J. Chem. Phys. 98 6488
[85] Plazek D J, Chay I C, Ngai K L, Roland C M 1995 Macromolecules 28 6432
[86] Ngai K L, Plazek D J and Rizos A K 1997 J. Polymer Sci. B:Polym. Phys. 35 599
[87] Ngai K L, Plazek D J and Rendell R W 1997 Rheol. Acta 36 307
[88] Roland C M, Ngai K L and Plazek D J 2004 Macromolecules 37 7051
[89] Ngai K L and Plazek D J 2002 Macromolecules 35 9136
[90] Ngai K L, Casalini R and Roland C M 2005 Macromolecules 38 4363
[91] Wu X B, Liu C S, Zhu Z G, Ngai K L and Wang L M 2011 Macromolecules 44 3605
[92] Wu X B and Zhu Z G 2009 J. Phys. Chem. B 113 11147
[93] Wu J, Huang G, Wang X, He X and Xu B 2012 Macromolecules 45 8051
[94] Ngai K L and Plazek D J 2014 Macromolecules 47 8056
[95] Wu X B, Liu C S and Ngai K L 2014 Soft Matter 10 9324
[96] Ngai K L, Prevosto D and Grassia L 2013 J. Polym. Sci. B:Polym. Phys. 51 214
[97] Sokolov A P and Schweizer K S 2009 Phys. Rev. Lett. 102 248301
[98] Ediger M D and Harrowell P 2012 J. Chem. Phys. 137 080901
[99] Ngai K L and Roland C M 2013 J. Chem. Phys. 139 036101
[100] O'Connell P A, Hutcheson S A and McKenna G B 2008 J. Polym. Sci. B:Polym. Phys. 46 1952
[101] Li X and McKenna G B 2015 Macromolecules 48 6329
[102] Arrese-Igor S, Alegria A, Moreno A J and Colmenero J 2012 Soft Matter 8 3739
[103] Cicerone M T, Blackburn F R and Ediger M D 1995 J. Chem. Phys. 102 471
[104] Chang I and Sillescu H 1997 J. Phys. Chem. B 101 8794
[105] Hooker J C and Torkelson J M 1995 Macromolecules 28 7683
[106] Mapes M K, Swallen S F and Ediger M D 2006 J. Phys. Chem. B 110 507
[107] Magill J H and Plazek D J 1967 J. Chem. Phys. 46 3757
[108] Plazek D J and Magill J H 1968 J. Chem. Phys. 49 3678
[109] Ngai K L, Magill J H and Plazek D J http://dx.doi.org/2000 J. Chem. Phys. 112 1887
[110] Richert R, Duvvuri K and Duong L J 2003 J. Chem. Phys. 118 1828
[111] Richert R 2005 J. Chem. Phys. 123 154502
[112] Zhu X R and Wang C H 1986 J. Chem. Phys. 84 6086
[113] Zemke K, Schmidt-Rohr K, Magill J H, Sillescu H and Spiess H W 1993 Mol. Phys. 80 1317
[114] Rajian J R, Huang W, Richert R and Quitevis E L 2006 J. Chem. Phys. 124 014510
[115] Ngai K L 1999 J. Phys. Chem. B 103 10684
[116] Ngai K L 1999 Philos. Mag. B 79 1783
[117] Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99
[118] Ngai K L 2001 IEEE Trans. Dielect. Electrl Insul. 8 329
[119] Ngai K L 1993 J. Chem. Phys. 98 7588
[120] Ngai K L, Mashimo S and Fytas G 1988 Macromolecules 21 3030
[121] Swallen S F, Bonvallet P A, McMahon R J and Ediger M D 2003 Phys. Rev. Lett. 90 015901
[122] Chakrabarti D and B. Bagchi 2006 Phys. Rev. Lett. 96 187801
[123] Takeuchi H and Roe R J 1991 J. Chem. Phys. 94 7446
[124] Ngai K L, Plazek D J and Roland C M 2009 Phys. Rev. Lett. 103 159801
[125] Tatsumisago M, Angell C A and Martin S W 1992 J. Chem. Phys. 97 6968
[126] Angell C A 1992 Annu. Rev. Phys. Chem. 43 693
[127] Estalji S, Kanert O, Steinert J, Jain H and Ngai K L 1991 Phys. Rev. B 43 7481
[128] Estalji S, Küchler R, Kanert O, Bölter R, Jain H and Ngai K L 1992 Le J. Phys. IV 02 C2-159
[129] Kanert O, Küchler R, Ngai K L and Jain H 1994 Phys. Rev. B 49 76
[130] Borsa F, Torgeson D R, Martin S W and Patel H K 1992 Phys. Rev. B 46 795
[131] Kim K, Torgeson D R, Borsa F, Cho J, Martin S and Svare I 1996 Solid State Ionics 91 7
[132] Kim K, Torgeson D R, Borsa and Martin S W 1996 Solid State Ionics 90 29
[133] Villa M and Bjorkstam J L 1980 Phys. Rev. B 22 5033
[134] Meyer M, Maass P and Bunde A 1993 Phys. Rev. Lett. 71 573
[135] Ngai K L and Kanert O 1992 Solid State Ionics 53——56 936
[136] Ngai K L 1993 Solid State Ionics 61 345
[137] Ngai K L 1993 Phys. Rev. B 48 13481
[138] Ngai K L 1993 J. Chem. Phys. 98 6424
[139] Ngai K L 1998 Solid State Ionics 105 225
[140] Ngai K L and León C 2003 J. Non. Cryst. Solids 315 124
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Brownian localization: A generalized coupling model yielding a nonergodic Langevin equation description
Lin Jian (刘剑), Wang Hai-Yan (王海燕), Bao Jing-Dong (包景东). Chin. Phys. B, 2013, 22(6): 060513.
[3] Dynamics of vibrational chaos and entanglement in triatomic molecules: Lie algebraic model
Zhai Liang-Jun(翟良君), Zheng Yu-Jun(郑雨军), and Ding Shi-Liang(丁世良) . Chin. Phys. B, 2012, 21(7): 070503.
No Suggested Reading articles found!