|
|
Controls of pass-bands in asymmetric acoustic transmission |
Hong-Xiang Sun(孙宏祥)1,2,3, Shu-Yi Zhang(张淑仪)1, Shou-Qi Yuan(袁寿其)2 |
1. Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China;
3. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The controls of the pass-bands in an asymmetric acoustic transmission system are investigated numerically and experimentally, and the system consists of a periodical rectangular grating and two uniform brass plates in water. We reveal that the pass-band of the asymmetric acoustic transmission is closely related to the grating period, but is affected slightly by the brass plate thickness. Moreover, the transmittance can be improved by adjusting the grating period and other structural parameters simultaneously. The control method of the system has the advantages of wider frequency range and simple operation, which has great potential applications in ultrasonic devices.
|
Received: 13 November 2015
Revised: 20 March 2016
Accepted manuscript online:
|
PACS:
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
43.20.+g
|
(General linear acoustics)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the Major Program of the National Natural Science Foundation of China (Grant No. 51239005), the National Natural Science Foundation of China (Grant Nos. 11174142 and 11404147), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140519), the China Postdoctoral Science Foundation (Grant No. 2015M571672), the Training Project of Young Backbone Teachers of Jiangsu University, China, and the Research Fund for Advanced Talents of Jiangsu University, China (Grant No. 13JDG106). |
Corresponding Authors:
Hong-Xiang Sun, Shu-Yi Zhang
E-mail: jsdxshx@ujs.edu.cn;zhangsy@nju.edu.cn
|
Cite this article:
Hong-Xiang Sun(孙宏祥), Shu-Yi Zhang(张淑仪), Shou-Qi Yuan(袁寿其) Controls of pass-bands in asymmetric acoustic transmission 2016 Chin. Phys. B 25 124313
|
[1] |
Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
|
[2] |
Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
|
[3] |
Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
|
[4] |
Yu Z and Fan S 2009 Nat. Photon. 3 91
|
[5] |
Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729
|
[6] |
Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447
|
[7] |
Nesterenko V F, Daraio Herbold C E B and Jin S 2005 Phys. Rev. Lett. 95 158702
|
[8] |
Liang B, Yuan Y and Cheng J C 2015 Acta Phys. Sin. 64 094305 (in Chinese)
|
[9] |
Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
|
[10] |
Boechler N, Theochari G and Daraio C 2011 Nat. Mater. 10 665
|
[11] |
Popa B I and Cummer S A 2014 Nat. Commun. 5 3398
|
[12] |
Fleury R, Sounas D L, Sieck C F, Haberman M R and Alú A 2014 Science 343 516
|
[13] |
He Z J, Peng S S, Ye Y T, Dai Z W, Qiu C Y, Ke M Z and Liu Z Y 2011 Appl. Phys. Lett. 98 083505
|
[14] |
Tanaka Y, Murai T and Nishiguchi N 2012 J. Appl. Phys. 111 024507
|
[15] |
Sun H X, Zhang S Y and Shui X J 2012 Appl. Phys. Lett. 100 103507
|
[16] |
Sun H X and Zhang S Y 2013 Appl. Phys. Lett. 102 113511
|
[17] |
Jia H, Ke M Z, Li C H, Qiu C Y and Liu Z Y 2013 Appl. Phys. Lett. 102 153508
|
[18] |
Sun H X, Yuan S Q and Zhang S Y 2015 Appl. Phys. Lett. 107 213505
|
[19] |
Sun H X, Zhang S Y, Yuan S Q and Xia J P 2016 Appl. Phys. A 122 328
|
[20] |
Li X F, Ni X, Feng L, Lu M H, He C and Chen Y F 2011 Phys. Rev. Lett. 106 084301
|
[21] |
Cicek A, Kaya O A and Ulug B 2012 Appl. Phys. Lett. 100 111905
|
[22] |
Oh J H, Kim H W, Ma P S, Seung H M and Kim Y Y 2012 Appl. Phys. Lett. 100 213503
|
[23] |
Huang Y L, Sun H X, Xia J P, Yuan S Q and Ding X L 2016 Appl. Phys. Lett. 109 013501
|
[24] |
Li Y, Liang B, Gu Z M, Zou X Y and Cheng J C 2013 Appl. Phys. Lett. 103 053505
|
[25] |
Zhu Y F, Zou X Y, Liang B and Cheng J C 2015 Appl. Phys. Lett. 106 173508
|
[26] |
Danworaphong S, Kelf T A, Matsuda O, Tomoda M, Tanaka Y, Nishiguchi N, Wright O B, Nishijima Y, Ueno K, Uodkazis S and Misawa H 2011 Appl. Phys. Lett. 99 201910
|
[27] |
Zanjani M B, Davoyan A R, Mahmoud A M, Engheta N and Lukes J R 2014 Appl. Phys. Lett. 104 081905
|
[28] |
Gu Z M, Liang B, Zou X Y, Yang J, Li Y, Yang J and Cheng J C 2015 Appl. Phys. Lett. 107 213503
|
[29] |
Twersky V 1962 IEEE Trans. Anten. Propag. 10 737
|
[30] |
Bhattacharya M C, Guy R W and Crocker M J 1971 J. Sound Vib. 18 157
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|