INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Bolometric effect in a waveguide-integrated graphene photodetector |
Yubing Wang(王玉冰), Weihong Yin(尹伟红), Qin Han(韩勤), Xiaohong Yang(杨晓红), Han Ye(叶焓), Qianqian Lv(吕倩倩), Dongdong Yin(尹冬冬) |
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Graphene is an alternative material for photodetectors owing to its unique properties. These include its uniform absorption of light from ultraviolet to infrared and its ultrahigh mobility for both electrons and holes. Unfortunately, due to the low absorption of light, the photoresponsivity of graphene-based photodetectors is usually low, only a few milliamps per watt. In this letter, we fabricate a waveguide-integrated graphene photodetector. A photoresponsivity exceeding 0.11 A·W-1 is obtained which enables most optoelectronic applications. The dominating mechanism of photoresponse is investigated and is attributed to the photo-induced bolometric effect. Theoretical calculation shows that the bolometric photoresponsivity is 4.6 A·W-1. The absorption coefficient of the device is estimated to be 0.27 dB·μ-1.
|
Received: 20 June 2016
Revised: 13 July 2016
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0402204), the High-Tech Research and Development Program of China (Grant Nos. 2013AA031401, 2015AA016902, and 2015AA016904), and the National Natural Science Foundation of China (Grant Nos. 61674136, 61176053, 61274069, and 61435002). |
Corresponding Authors:
Qin Han
E-mail: hanqin@semi.ac.cn
|
Cite this article:
Yubing Wang(王玉冰), Weihong Yin(尹伟红), Qin Han(韩勤), Xiaohong Yang(杨晓红), Han Ye(叶焓), Qianqian Lv(吕倩倩), Dongdong Yin(尹冬冬) Bolometric effect in a waveguide-integrated graphene photodetector 2016 Chin. Phys. B 25 118103
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A2004 Science 3 669
|
[2] |
Wang X, Shi Y and Zhang R 2013 Chin. Phys. B 22 098505
|
[3] |
Liao L, Lin Y C, Bao M Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y and Duan X 2010 Nature 467 305
|
[4] |
Wu H, Linghu C, Lv H and Qian H 2013 Chin. Phys. B 22 098106
|
[5] |
Schedin F, Geim A K, Morozov S V Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
|
[6] |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
|
[7] |
Li W, Chen B, Meng C Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J and Shen Y R 2014 Nano Lett. 14 955
|
[8] |
Liu M, Yin X and Zhang X 2012 Nano Lett. 12 1482
|
[9] |
Bolotin K I, Sikes K J, Jiang Z Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
|
[10] |
Yin W, Han Q and Yang X 2012 Acta Phys. Sin. 61 248502(in Chinese)
|
[11] |
Nair R R, Blake P, Grigorenko A N Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
|
[12] |
Mueller T, Xia F and Avouris P 2010 Nat. Photonics 4 297
|
[13] |
Yin W, Wang Y, Han Q and Yang X 2015 Chin. Phys. B 24068101
|
[14] |
Lee E J H, Balasubramanian K,Weitz R T Burghard M and Kern K 2008 Nat. Nanotechnol. 3 486
|
[15] |
Peters E C, Lee E J H, Burghard M and Kern K 2010 Appl. Phys. Lett. 97 193102
|
[16] |
Xia F, Mueller T, Golizadeh-Mojarad R Freitag M, LinY M, Tsang J, Perebeinos V and Avouris P 2009 Nano Lett. 9 1039
|
[17] |
Lemme M C Koppens F H L, Falk A L Rudner M S, Park H, Levitov L S and Marcus C M 2011 Nano Lett. 11 4134
|
[18] |
Gabor N M Song J C W, Ma Q Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S and Jarillo-Herrero P 2011 Science 334 648
|
[19] |
Xu X, Gabor N M, Alden J S van der Zande A M and McEuen P L 2010 Nano Lett. 10 562
|
[20] |
Sun D, Aivazian G, Jones A M Ross J S, Yao W, Cobden D and Xu X 2012 Nat. Nanotechnol. 7 114
|
[21] |
Freitag M, Low T, Xia F and Avouris P 2013 Nat. Photonics 7 53
|
[22] |
Mahjoub A M, Suzuki S, Ouchi T, Aoki N, Miyamoto K, Yamaguchi T, Omatsu T, Ishibashi K and Ochiai Y 2015 Appl. Phys. Lett. 107 083506
|
[23] |
Engel M, Steiner M, Lombardo A Ferrari A C, Lohneysen H v Avouris P and Krupke R 2012 Nat Commun 3 906
|
[24] |
Furchi M, Urich A, Pospischil A Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G and Mueller T 2012 Nano Lett. 12 2773
|
[25] |
Schall D, Neumaier D Mohsin M Chmielak B, Bolten J, Porschatis C, Prinzen A, Matheisen C, Kuebart W, Junginger B, Templ W, Giesecke A L and Kurz H 2014 ACS Photonics 1 781
|
[26] |
Li H, Anugrah Y, Koester S J and Li M 2012 Appl. Phys. Lett. 101 111110
|
[27] |
Wei P, Bao W, Pu Y Lau C N and Shi J 2009 Phys. Rev. Lett. 102 166808
|
[28] |
Zuev Y M, Chang W and Kim P 2009 Phys. Rev. Lett. 102 096807
|
[29] |
Balandin A A, Ghosh S, Bao W Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[30] |
Chen J H, Jang C, Xiao S Ishigami M and Fuhrer M S 2008 Nat Nan-otechnol. 3 206
|
[31] |
Moser J, Barreiro A and Bachtold A 2007 Appl. Phys. Lett. 91 163513
|
[32] |
Freitag M, Steiner M, Martin Y, Perebeinos V, Chen Z, Tsang J C and Avouris P 2009 Nano Lett. 9 1883
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|