Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090502    DOI: 10.1088/1674-1056/24/9/090502
GENERAL Prev   Next  

Invariance of specific mass increment in the case of non-equilibrium growth

L. M. Martyusheva b, A. P. Sergeevb, P. S. Terentieva
a Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia;
b Institute of Industrial Ecology, 20 S. Kovalevskoy Str., Ekaterinburg 620219, Russia
Abstract  

The invariance of specific mass increments of crystalline structures that co-exist in the case of non-equilibrium growth is grounded for the first time by using the maximum entropy production principle. Based on the hypothesis of the existence of a universal growth equation, and through the dimensional analysis, an explicit form of the time-dependent specific mass increment is proposed. The applicability of the obtained results for describing growth in animate nature is discussed.

Keywords:  entropy production      universal growth equation  
Received:  27 January 2015      Revised:  23 March 2015      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  87.19.lx (Development and growth)  
Corresponding Authors:  L. M. Martyushev     E-mail:  leonidmartyushev@gmail.com

Cite this article: 

L. M. Martyushev, A. P. Sergeev, P. S. Terentiev Invariance of specific mass increment in the case of non-equilibrium growth 2015 Chin. Phys. B 24 090502

[1] Martyushev L M and Terentiev P S 2012 Phys. Rev. E 85 041604
[2] Martyushev L M and Terentiev P S 2013 Physica A 392 3819
[3] The abbreviation uses the initial letters of “dendrite” and “seaweed”.
[4] Currently, non-equilibrium thermodynamics is very actively and fruitfully used to obtain various interesting results relating to nonequilibrium systems (see, for example, Refs.).
[5] Ziegler H 1963 Progress in Solid Mechanics (Vol. 4) (Sneddon I N and Hill R (eds.)) (Amsterdam: North Holland)
[6] Ziegler H 1983 An Introduction to Thermomechanics (Amsterdam: North Holland)
[7] Kleidon A and Lorenz R (eds.) 2005 Non-equilibrium Thermodynamics and Entropy Production: Life, Earth and Beyond (Heidelberg: Springer)
[8] Martyushev L M and Seleznev V D 2006 Phys. Rep. 426 1
[9] Dewar R C, Lineweaver C H, Niven R K and Regenauer-Lieb K (eds.) 2014 Beyond the Second Law. Entropy Production and Nonequilibrium Systems (Berlin, Heidelberg: Springer-Verlag)
[10] Ben-Jacob E and Garik P 1990 Nature 343 523
[11] Hill A 1990 Nature 348 426
[12] Martiouchev L M, Seleznev V D and Kuznetsova I E 2000 J. Exper. Theor. Phys. 91 132
[13] Huxley J 1932 Problems of Relative Growth (London: Methuen & Co)
[14] Schmalhausen I 1927 Wilhelm Roux' Arch. Entwickl.-Mech. Org. 110 33
[15] Schmalhausen I 1930 Wilhelm Roux' Arch. Entwickl.-Mech. Org. 123 153
[16] Schmalhausen I 1930 Biolog. Zentralblatt 50 292
[17] Martyushev L M and Terentiev P S 2014 ArXiv: q-bio/1404.4318
[18] Bridgman P W 1922 Dimensional Analysis (New Haven: Yale University Press)
[19] Therefore, for instance, a crystal growing in a solution accumulates impurities and other defects on its surface with time, which significantly influence the rate of growth.
[20] Cao L, Ke P, Qiao L Y and Zheng Z G 2014 Chin. Phys. B 23 070501
[21] Chen Q and Hou M Y 2014 Chin. Phys. B 23 074501
[1] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[2] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
[3] Time dependence of entropy flux and entropy production for a dynamical system driven by noises with coloured cross-correlation
Xie Wen-Xian(谢文贤), Xu Wei(徐伟), and Cai Li(蔡力). Chin. Phys. B, 2007, 16(1): 42-46.
No Suggested Reading articles found!