Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110301    DOI: 10.1088/1674-1056/23/11/110301
GENERAL Prev   Next  

A theorem for quantum operator correspondence to the solution of the Helmholtz equation

Fan Hong-Yi (范洪义)a, Chen Jun-Hua (陈俊华)b, Zhang Peng-Fei (张鹏飞)c, He Rui (何锐)d
a Department of Physics, Ningbo University, Ningbo 315211, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
c Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
d College of Material and Chemical Engineering, West Anhui University, Luan 237012, China
Abstract  We propose a theorem for the quantum operator that corresponds to the solution of the Helmholtz equation, i.e.,
∫∫∫V(x1,x2,x3|x1,x2,x3><x1,x2,x3|d3x = V(X1,X2,X3) = e-λ2/4:V(X1,X2,X3):,
where IV(x1,x2,x3) is the solution to the Helmholtz equation ∇2V+λ2V=0, the symbol::denotes normal ordering, and X1,X2,X3 are three-dimensional coordinate operators. This helps to derive the normally ordered expansion of Dirac's radius operator functions. We also discuss the normally ordered expansion of Bessel operator functions.
Keywords:  normally ordered expansion      radius operators      Helmholtz equation      Bessel operator function  
Received:  21 March 2014      Revised:  22 April 2014      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  02.30.Gp (Special functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175113).
Corresponding Authors:  Fan Hong-Yi, Chen Jun-Hua     E-mail:  fhym@ustc.edu.cn;cjh@ustc.edu.cn

Cite this article: 

Fan Hong-Yi (范洪义), Chen Jun-Hua (陈俊华), Zhang Peng-Fei (张鹏飞), He Rui (何锐) A theorem for quantum operator correspondence to the solution of the Helmholtz equation 2014 Chin. Phys. B 23 110301

[1] Dirac P A M 1958 The Principle of Quantum Mechanics (4th edn.) (Oxford: Oxford University Press)
[2] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[3] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[4] Wang J S, Fan H Y and Meng X G 2010 Chin. Phys. B 19 034206
[5] Zhou N R, Hu L Y and Fan H Y 2011 Chin. Phys. B 20 120301
[6] Zhang B L, Meng X G and Wang J S 2012 Chin. Phys. B 21 030304
[7] Wang S, Jiang J J, Xu S M and Li H Q 2010 Chin. Phys. B 19 014208
[8] Weyl H 1927 Z. Phys. 46 1
[9] Wigner E P 1932 Phys. Rev. A 40 749
[10] Fan H Y and Ruan T N 1983 Commun. Theor. Phys. 2 1563
[11] Fan H Y and Ruan T N 1984 Commun. Theor. Phys. 3 345
[12] Fan H Y and Chen J H 2001 J. Phys. A 34 10939
[13] Fan H Y and Fu L 2003 J. Phys. A 36 1531
[1] A new approach of solving Green's function for wave propagation in an inhomogeneous absorbing medium
Li Wei(李维), Liu Shi-Bing(刘世炳), and Yang Wei(杨巍). Chin. Phys. B, 2010, 19(3): 030307.
[2] Numerical solution of Helmholtz equation of barotropic atmosphere using wavelets
Wang Ping (汪萍), Dai Xin-Gang (戴新刚). Chin. Phys. B, 2004, 13(10): 1770-1776.
No Suggested Reading articles found!