ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Vortex solitons in the semi-infinite gap of optically induced periodic lattices |
Wang Jian-Dong (王建东), Ji Hong (纪红), Liu Pu-Sheng (刘普生) |
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract Vortex solitons with a ring vortex core residing in a single lattice site in the semi-infinite gap of square optical lattices are reported. These solitons are no longer bound states of the Bloch-wave unit (Bloch-wave distribution in one lattice site) at the band edge of the periodic lattice, and consequently they do not bifurcate from the corresponding band edge. For saturable nonlinearity, one family of such solitons is found, and its existing curve forms a closed loop, which is very surprising. For Kerr nonlinearity, two families of such vortex solitons are found.
|
Received: 02 September 2012
Revised: 25 September 2012
Accepted manuscript online:
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
05.45.Yv
|
(Solitons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904009) and the Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2011J039 and ZYGX2011J047). |
Corresponding Authors:
Wang Jian-Dong
E-mail: jdwang@uestc.edu.cn
|
Cite this article:
Wang Jian-Dong (王建东), Ji Hong (纪红), Liu Pu-Sheng (刘普生) Vortex solitons in the semi-infinite gap of optically induced periodic lattices 2013 Chin. Phys. B 22 044207
|
[1] |
Efremidis N K, Hudock J, Christodoulides D N, Fleischer J W, Cohen O and Segev M 2003 Phys. Rev. Lett. 91 213906
|
[2] |
Efremidis N K and Christodoulides D N 2003 Phys. Rev. A 67 063608
|
[3] |
Louis Pear J Y, Ostrovskaya E A, Savage C M and Kivshar Y S 2003 Phys. Rev. A 67 013602
|
[4] |
Shi Z Q and Yang J K 2007 Phys. Rev. E 75 056602
|
[5] |
Pelinovsky D E, Sukhorukov A A and Kivshar Y S 2004 Phys. Rev. E 70 036618
|
[6] |
Wang J D and Yang J K 2008 Phys. Rev. A 77 033834
|
[7] |
Akylas T R, Hwang G and Yang J K 2012 Proc. R. Soc. A 468 116
|
[8] |
Wang J D, Yang J K, Alexander T J and Kivshar Y S 2009 Phys. Rev. A 79 043610
|
[9] |
Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147
|
[10] |
Yang J K and Musslimani Z H 2003 Opt. Lett. 28 2094
|
[11] |
Ostrovskaya E and Kivshar Y S 2004 Opt. Express 12 19
|
[12] |
Fischer R, Träger D, Neshev D N, Sukhorukov A A, Krolikowski W, Denz C and Kivshar Y S 2006 Phys. Rev. Lett. 96 023905
|
[13] |
Bartal G, Manela O, Cohen O, Fleischer J W and Segev M 2005 Phys. Rev. Lett. 95 053904
|
[14] |
Manela O, Cohen O, Bartal G, Fleischer J W and Segev M 2004 Opt. Lett. 29 2049
|
[15] |
Chen Z G, Martin H, Eugenieva E D, Xu J J and Bezryadina A 2004 Phys. Rev. Lett. 92 143902
|
[16] |
Lou C B, Wang X S, Xu J J, Chen Z G and Yang J K 2007 Phys. Rev. Lett. 98 213903
|
[17] |
Fedele F, Yang J K and Chen Z G 2005 Stud. Appl. Math. 115 279
|
[18] |
Wang J D, Yang J K and Chen Z G 2007 Phys. Rev. A 76 013828
|
[19] |
Yang X Y, Zheng J B and Dong L W 2011 Chin. Phys. B 20 034208
|
[20] |
Neshev D, Ostrovskaya E, Kivshar Y S and Chen Z G 2003 Opt. Lett. 28 710
|
[21] |
Yang J K, Makasyuk I, Bezryadina A and Chen Z G 2004 Opt. Lett. 29 1662
|
[22] |
Yang J K, Makasyuk I, Bezryadina A and Chen Z G 2004 Stud. Appl. Math. 113 389
|
[23] |
Kartashov Y V, Egorov A A, Torner L and Christodoulides D N 2004 Opt. Lett. 29 1918
|
[24] |
Yang J K, Zhang P, Yoshihara M, Hu Y and Chen Z G 2011 Opt. Lett. 36 772
|
[25] |
Neshev D N, Alexander T J, Ostrovskaya E A, Kivshar Y S, Martin H, Makasyuk I and Chen Z G 2004 Phys. Rev. Lett. 92 123903
|
[26] |
Fleischer J W, Bartal G, Cohen O, Manela O, Segev M, Hudock J and Christodoulides D N 2004 Phys. Rev. Lett. 92 123904
|
[27] |
Yang J K 2004 New J. Phys. 6 47
|
[28] |
Ostrovskaya E A, Alexander T J and Kivshar Y S 2006 Phys. Rev. A 74 023605
|
[29] |
Alexander T J, Sukhorukov A A and Kivshar Y S 2004 Phys. Rev. Lett. 93 063901
|
[30] |
Richter T and Kaiser F 2007 Phys. Rev. A 76 033818
|
[31] |
Alexander T J, Ostrovskaya E A and Kivshar Y S 2006 Phys. Rev. Lett. 96 040401
|
[32] |
Ostrovskaya A A and Kivshar Y S 2004 Phys. Rev. Lett. 93 160405
|
[33] |
Alexander T J and Kivshar Y S 2006 Appl. Phys. B 82 203
|
[34] |
Efremidis N K, Sears S, Christodoulides D N, Fleischer J W and Segev M 2002 Phys. Rev. E 66 046602
|
[35] |
Yang J K and Lakoba T I 2007 Stud. Appl. Math. 118 153
|
[36] |
Yang J K 2012 Stud. Appl. Math. 129 133
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|