ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Theoretical analyses on improved beam properties of GaSb-based 2.X-μm quantum-well diode lasers with no degradation in laser parameters |
Wang Yong-Bin (王永宾), Xu Yun (徐云), Song Guo-Feng (宋国峰), Chen Liang-Hui (陈良惠 ) |
Laboratory of Nano-Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Asymmetric laser heterostructure is developed to improve beam properties of GaSb-based diode lasers with no degradation in laser parameters. Employing the semivectorial finite difference method, the dependences of beam divergence and optical confinement factor on waveguide width and refractive index step are investigated theoretically. After carefully designing, a particular asymmetric laser structure is proposed. Its beam divergence in the fast axis is reduced from 61° to 34°compared with that of the broad-waveguide structure. The optical confinement factor is approximately equal to 0.0362 and comparable to that of the conventional broad-waveguide structure.
|
Received: 20 December 2011
Revised: 17 February 2012
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
Fund: Project supported by the Beijing Municipal Natural Science Foundation, China (Grant No. 4112058). |
Corresponding Authors:
Xu Yun
E-mail: xuyun@red.semi.ac.cn
|
Cite this article:
Wang Yong-Bin (王永宾), Xu Yun (徐云), Song Guo-Feng (宋国峰), Chen Liang-Hui (陈良惠 ) Theoretical analyses on improved beam properties of GaSb-based 2.X-μm quantum-well diode lasers with no degradation in laser parameters 2012 Chin. Phys. B 21 084208
|
[1] |
Garbuzov D, Martinelli R, Lee H, Menna R, York P, Dimarco L, Harvey M, Mararese R, Narayan S and Connolly J 1997 Appl. Phys. Lett. 70 2931
|
[2] |
Rattunde M, Mermelstein C, Schmitz J, Kiefer R, Pletschen W, Walther M and Wagner J 2002 Appl. Phys. Lett. 80 4085
|
[3] |
Kim J G, Shterengas L, Martinelli R U and Belenky G L 2003 Appl. Phys. Lett. 83 1926
|
[4] |
Salhi A, Rouillard Y, Pérona A, Grech P, Garcia M and Sirtori C 2004 Semicond. Sci. Technol. 19 260
|
[5] |
Petrescu-Prahova I B, Buda M and Van De Roer T G 1994 IEICE Trans. Electron. E77-C 1472
|
[6] |
Garbuzov D. Z, Abeles J H, Morris N A, Gardner P D, Triano A R, Harvey M G, Gilbert D B and Connolly J C 1996 Proc. SPIE 2682 20
|
[7] |
Rattunde M, Schmitz J, Kiefer R and Wagner J 2004 Appl. Phys. Lett. 84 4750
|
[8] |
Tong C Z, Niu Z C, Han Q and Wu R H 2005 Acta Phys. Sin. 54 3651 (in Chinese)
|
[9] |
Mawst L J, Bhattacharya A, Lopez J, Botez D, Garbuzov D Z, Demarco L, Connolly J C, Jansen M, Fang F and Nabiev R F 1996 Appl. Phys. Lett. 69 1532
|
[10] |
Belenky G, Kim J, Shterengas L, Gourevitch A and Martinelli R 2004 Electron. Lett. 40 737
|
[11] |
Mermelstein C, Rattunde M, Schmitz J, Simanowski S, Kiefer R, Walther M and Wagner J 2002 Mater. Res. Soc. Symp. Proc. 692 365
|
[12] |
Choi H, Turner G, Walpole J, Manfra M and Connors M 1998 Proc. SPIE 3284 268
|
[13] |
Ryvkin B S and Avrutin E A 2005 J. Appl. Phys. 98 026107
|
[14] |
Rattunde M, Schmitz J, Kaufel G, Kelemen M, Weber J and Wagner J 2006 Appl. Phys. Lett. 88 081115
|
[15] |
Chen J F, Kipshidze G and Shterengas L 2010 IEEE J. Quantum Electron. 46 1464
|
[16] |
Li Z G, Liu G J, You M H, Li L, Li M, Wang Y, Zhang B S and Wang X H 2009 Semiconductor Lasers 19 1230
|
[17] |
Stern M S 1988 IEE Proc. Pt. J. 135 56
|
[18] |
Kim C M and Ramaswamy R V 1989 IEEE J. Lightwave Technology 1 1581
|
[19] |
Xiao J B, Zhang M D and Sun X H 2006 Chin. Phys. 15 143
|
[20] |
Wilkinson J H 1964 An Introduction to Numerical Linear Algebra (Oxford: Clarendon Press)
|
[21] |
Zhao G Z, Yu X J, Xu Y and Zhu J 2010 Chin. Phys. B 19 070203
|
[22] |
Gan Q Q, Zhu X P, Pan X J, Deng J, Song G F and Chen L H 2004 Laser Technology 28 298
|
[23] |
Botez D 1999 Appl. Phys. Lett. 74 3102
|
[24] |
Lee J J, Mawst L J and Botez D 2002 IEEE Photon. Technol. Lett. 14 1046
|
[25] |
Taylor G W and Claisse P R 1995 IEEE J. Quantum Electron. 31 2133
|
[26] |
Asryan L V, Luryi S and Suris R A 2003 IEEE J. Quantum Electron. 39 404
|
[27] |
Belenky G, Shterengas L, Wang D, Kipshidze G and Vorobjev L 2009 Semicond. Sci. Technol. 24 115013
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|