Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080401    DOI: 10.1088/1674-1056/21/8/080401
GENERAL Prev   Next  

Thermal properties of Lense–Thirring spacetime in tetrad theory of gravity

Gamal G. L. Nasheda b c
a Mathematics Department, Faculty of Science, King Faisal University, P. O. Box 380 Al-Ahsaa 31982, the Kingdom of Saudi Arabia;
b Mathematics Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt;
c Center for Theoretical Physics, British University of Egypt Sherouk City 11837, P. O. Box 43, Egypt
Abstract  Using the divergence term appearing in the Lagrangian of the teleparallel equivalent of general relativity (TEGR), we calculate the thermodynamic quantities of four-tetrads spacetime reproducing Lense-Thirring (LT) metric. We also investigate the first law of thermodynamics and quantum statistical relation.
Keywords:  Euclidean continuation method      thermodynamic quantities      first law of thermodynamic      quantum statistical relation  
Received:  19 January 2012      Revised:  20 February 2012      Accepted manuscript online: 
PACS:  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  04.60.-m (Quantum gravity)  
  04.90.+e (Other topics in general relativity and gravitation)  
Corresponding Authors:  Gamal G. L. Nashed     E-mail:  nashed@bue.edu.eg

Cite this article: 

Gamal G. L. Nashed Thermal properties of Lense–Thirring spacetime in tetrad theory of gravity 2012 Chin. Phys. B 21 080401

[1] Hawking S W 1974 Nature 248 (1974) 30
[2] Hawking S W 1976 Phys. Rev. D 13 2
[3] Hawking S W 1975 Commun. Math. Phys. 43 199
[4] Damour T and Ruffini R 1976 Phys. Rev. D 14 332
[5] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[6] Zhang J Y and Zhao Z 2005 JHEP 10 055
[7] Zhang J Y and Zhao Z 2005 Phys. Lett. B 618 14
[8] Christensen S M and Fulling S A 1977 Phys. Rev. D 15 8
[9] Robinson S P and Wilczek F 2005 Phys. Rev. Lett. 95 011303
[10] Setare M R 2006 Euro. Phys. J. C 49 865
[11] Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. Lett. 96 151302
[12] Iso S, Morita T and Umetsu H 2007 Phys. Rev. D 75 024041
[13] Sudarshan E C G and Mukunda N 1974 Classical Dynamics: A Modern Perspective (New York: John Wiley and Sons)
[14] Itzykson C and Zuber J 1980 Quantum Field Theory (New York: McGraw-Hill Inc.)
[15] Goldstein H 1980 Classical Mechanics (Massachusetts: Addison-Wesley)
[16] Gibbons G W, Perry M J and Pope C N 2005 Class. Quantum Grav. 22 1503
[17] Ashtekar A and Magnon A 1984 Class. Quantum Grav. 1 L39
[18] Ashtekar A and Das S 2000 Class. Quantum Grav. 17 L17
[19] Regge T and Teitelboim C 1974 Ann. Phys. 88 286
[20] Abbott L F and Deser S 1974 Nucl. Phys. 88 286
[21] Deser S, Kanik I and Tekin B 2005 Class. Quantum Grav. 22 3383
[22] Deser S and Tekin B 2007 Phys. Rev. D 75 084032
[23] Gibbons G W, Hawking S W, Horowitz G T and Perry M J 1983 Commun. Math. Phys. 88 295
[24] Gibbons G W, Hull C M and Warner N P 1983 Nucl. Phys. B 218 173
[25] Iyer V and Wald R M 1994 Phys. Rev. D 50 846
[26] Wald R M and Zoupas A 2000 Phys. Rev. D 61 084027
[27] Hollands S, Ishibashi A and Marolf D 2005 Class. Quantum Grav. 22 2881
[28] Cai R and Cao L 2006 JHEP 0603 083
[29] Anderson I M and Torre C G 1996 Phys. Rev. Lett. 77 4109
[30] Barnich G and Brandt F 2002 Nucl. Phys. B 633 3
[31] Katz J, Bicak J and Lynden-Bell D 1997 Phys. Rev. D 55 5957
[32] Deruelle N and Katz J 2005 Class. Quantum Grav. 22 421
[33] Aliev A N 2007 Phys. Rev. D 75 084041
[34] Julia B and Silva S 1998 Class. Quantum Grav. 15 2173
[35] Silva S 1999 Nucl. Phys. B 558 391
[36] Julia B and Silva S 2000 Class. Quantum Grav. 17 4733
[37] Aros R, Contreras M, Olea R, Troncoso R and Zanelli J 2000 Phys. Rev. Lett. 84 1647
[38] Aros R, Contreras M, Olea R, Troncoso R and Zanelli J 2000 Phys. Rev. D 62 044002
[39] Obukhov Y and Rubilar G F 2006 Phys. Rev. D 74 064002
[40] Henningson M and Skenderis K 1998 JHEP 9807 023
[41] Balasubramanian V and Kraus P 1999 Commun. Math. Phys. 208 413
[42] Barnich G and Compéere G 2005 Phys. Rev. D 71 044016
[43] Olea R 2005 JHEP 0506 023
[44] Olea R 2007 JHEP 0704 073
[45] Maluf J W, DaRocha-neto J F, Toribio T M L and Castello-Branco K H 2002 Phys. Rev. D 65 124001
[46] Maluf J W 1994 J. Math. Phys. 35 335
[47] Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2752
[48] Hawking S W 1976 Phys. Rev. D 14 2460
[49] Hawking S W 1979 in General Relativity, eds. Hawking S and Israel W (Cambridge, Cambridge University Press)
[50] Nashed G G L 2006 Mod. Phys. Lett. A 21 2241
[51] Nashed G G L 2002 Phys. Rev. D 66 064015
[52] Nashed G G L 2008 Eur. Phys. J. C 54 291
[53] Shirafuji T, Nashed G G L and Hayashi K 1996 Prog. Theor. Phys. 95 665
[54] Nashed G G L and Shirafuji T 2007 Int. J. Mod. Phys. D 16 65
[55] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco, Freeman)
[56] Nieh H T 1980 J. Math. Phys. 21 1439
[57] Nieh H T 1982 J. Math. Phys. 23 373
[58] Hehl F W, Kopczynski W, McCrea J D and Mielke E W 1991 J. Math. Phys. 32 2169
[59] Mielke E W and Baekler P 1991 Phys. Lett. A 156 ( 399
[60] Baekler P, Mielke E W and Hehl F W 1992 Nuovo Cim. B 107 91
[61] Kawai T 1994 Phys. Rev. D 49 2862
[62] García A A, Hehl F W, Heinicke C and Macías A 2003 Phys. Rev. D 67 124016
[63] Blagojevćc M and Vasilić M 2003 Phys. Rev. D 68 104023
[64] Obukhov Y N 2003 Phys. Rev. D 68 124015
[65] Bak D, Cagnemi D and Jackiw R 1994 Phys Rev. D 49 5173
[66] Larrañaga A 2011 Commun. Theor. Phys. 55 72
[67] Fatima A and Saifullah K arXiv: 1108.1622
[68] Maluf J W, Veiga M V O and da Rocha-neto J F 2007 Gen. Rel. Grav. 39 227
[69] Obukhov Y N, Pereira J G and Rubilar G F 2009 Class. Quantum Grav. 26 215014
[70] Nashed G G L 2011 Chin. Phys. B 20 110401
[1] Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
Yi-Huan Wei(魏益焕). Chin. Phys. B, 2019, 28(12): 120401.
[2] Quantum pseudodots under the influence of external vector and scalar fields
M Eshghi, S M Ikhdair. Chin. Phys. B, 2018, 27(8): 080303.
[3] Energy and first law of thermodynamics for Born–Infeld–anti-de-Sitter black hole
Wei Yi-Huan(魏益焕). Chin. Phys. B, 2010, 19(9): 090404.
[4] Effective first law of thermodynamics of black holes with two horizons
Wei Yi-Huan(魏益焕). Chin. Phys. B, 2009, 18(2): 821-824.
No Suggested Reading articles found!