Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 076101    DOI: 10.1088/1674-1056/21/7/076101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Fabrication processing effects on microstructure and morphology of erbium film

Shen Hua-Hai(申华海)a), Peng Shu-Ming(彭述明)b), Long Xing-Gui(龙兴贵)b), Zhou Xiao-Song(周晓松)b), Yang Li(杨莉)a), Liu Jin-Hua(刘锦华)b), Sun Qing-Qiang(孙庆强) a), and Zu Xiao-Tao(祖小涛)a)
a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  The effects of substrate temperature on the microstructure and the morphology of erbium film are systematically investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). All the erbium films are grown by the electron-beam vapor deposition (EBVD). A novel preparation method for observing the cross-section morphology of the erbium film is developed. The films deposited at 200 ℃ have (002) preferred orientation, and the films deposited at 450 ℃ have mixed (100) and (101) texture, which are due to the different growth mechanisms of surface energy minimization and recrystallization, respectively. The peak positions and the full widths at half maximum (FWHMs) of erbium diffraction lines (100), (002), and (101) shift towards higher angles and decrease with the increasing substrate temperature in a largely uniform manner, respectively. Also, the lattice constants decrease with the increasing temperature. The transition in the film stresses can be used to interpret the changes in peak positions, FWHMs, and lattice constants. The stress is compressive for the as-growth films, and is counteracted by the tensile stress formed during the process of temperature cooling down to room temperature. The tensile stress mainly originates from the difference in the coefficients of thermal expansion of substrate--film couple.
Keywords:  erbium film      substrate temperature      preferred orientation      columnar grain  
Received:  29 September 2011      Revised:  26 February 2012      Accepted manuscript online: 
PACS:  61.05.-a (Techniques for structure determination)  
  81.10.Jt (Growth from solid phases (including multiphase diffusion and recrystallization))  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.15.Jj (Ion and electron beam-assisted deposition; ion plating)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10976007), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2009J040), the Science and Technology Foundation of CAEP, China (Grant No. 2009A0301015), and the Major Program of the National Natural Science Foundation of China (Grant No. 91126001).
Corresponding Authors:  Zu Xiao-Tao     E-mail:  xtzu@uestc.edu.cn

Cite this article: 

Shen Hua-Hai(申华海), Peng Shu-Ming(彭述明), Long Xing-Gui(龙兴贵), Zhou Xiao-Song(周晓松), Yang Li(杨莉), Liu Jin-Hua(刘锦华), Sun Qing-Qiang(孙庆强), and Zu Xiao-Tao(祖小涛) Fabrication processing effects on microstructure and morphology of erbium film 2012 Chin. Phys. B 21 076101

[1] Yang L, Peng S M, Long X G, Gao F, Heinisch H L, Kurtz R J and Zu X T 2010 J. Appl. Phys. 107 054903
[2] Brumbach M T, Ohlhausen J A, Zavadil K R, Snow C S and Woicik J C 2011 J. Appl. Phys. 109 114911
[3] Knapp J A, Browning J F and Bond G M 2010 Nucl. Instrum. Meth. B 268 2141
[4] Gu E D, Savaloni H, Player M A and Marr G V 1992 J. Phys. Chem. Solids 53 127
[5] Bond G M, Browning J F and Snow C S 2010 J. Appl. Phys. 107 083514
[6] Ferrizz R M 2006 Erbium Hydride Decomposition Kinetics, Sandia Report, SAND2006-7014
[7] Knapp J A, Browning J F and Bond G M 2009 J. Appl. Phys. 105 053501
[8] Dow P A, Briers G W, Dewey M A P and Stark D S 1968 Nucl. Instrum. Meth. 60 293
[9] Graves E R, Rodrigues A A, Goldblatt M and Meyer D I 1949 Rev. Sci. Inst. 20 579
[10] Redstone R and Rowland M C 1964 Nature 201 1115
[11] Gabis I, Evard E, Voyt A, Chernov I and Zaika Y 2003 J. Alloys Comp. 356--357 353
[12] Ferrizz R M 2007 Erbium Hydride Thermal Desorption: Controlling Kinetics, Sandia Report, SAND2007-2659
[13] Jones P M S, Ellis P and Aslett T 1969 Nature 223 829
[14] Dai W, Luo J S, Tang Y J, Wang C Y, Chen S J and Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese)
[15] Venhaus T and Poths J 2005 Fusion Sci. Technol. 7th International Conference on Tritium Science and Technology 48 601
[16] Beavis L C and Kass W J 1977 J. Vac. Sci. Technol. 14 509
[17] Savaloni H, Player M A, Gu E and Marr G V 1992 Vacuum 43 965
[18] Savaloni H and Player M A 1995 Vacuum 46 167
[19] Wang J X, Qin Y L, Yan H Q, Gao P Q, Li J S, Yin M and He D Y 2009 Chin. Phys. B 18 773
[20] Parish C M, Snow C S, Kammler D R and Brewer L N 2010 J. Nucl. Mater. 403 191
[21] Grovenor C R M, Hentzell H T G and Smith D A 1984 Acta Metall. 32 773
[22] Lundin C E 1968 Trans. Met. Soc. AIME 242 1161
[23] Zhou M, Nose M, Makino Y and Nogi K 2000 Thin Solid Films 359 165
[24] Pang X L, Yang H S, Liu X L, Gao K W, Wang Y B, Volinsky A A and Levin A A 2011 Thin Solid Films 519 5831
[25] Zhang J M, Wang D D and Xu K W 2006 Appl. Surf. Sci. 253 2018
[26] Dhesi S S, White R G, Patchett A J, Lee M H, Blyth R I R, Leibsle F M and Barrett S D 1995 Phys. Rev. B 51 17946
[27] Lee D N 2000 Int. J. Mech. Sci. 42 1645
[28] Yuan Z J, Zhu X M, Wang X, Cai X K, Zhang B P, Qiu D J and Wu H Z 2011 Thin Solid Films 519 3254
[29] D'Heurle F M 1970 Metall. Trans. 1 725
[30] Chason E, Sheldon B W, Freund L B, Floro J A and Hearne S J 2002 Phys. Rev. Lett. 88 6013
[31] Speight J G 2005 Lange's Handbook of Chemistry (16th edn.) (New York: McGraw-Hill)
[32] Adams D P, Romero J A, Rodriguez M A, Floro J A and Kotula P G 2002 Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films, Sandia Report, SAND2002-1466
[1] Tunable surface-plasmon-resonance wavelength of silver island films
Wang Ji-Fei(王继飞), Li Hong-Jian(李宏建), Zhou Zi-You(周子游), Li Xue-Yong(李雪勇), Liu Ju(刘菊), and Yang Hai-Yan(杨海艳) . Chin. Phys. B, 2010, 19(11): 117310.
[2] Structural and electrical properties of SrTiO3 thin films as insulator of metal--ferroelectric--insulator--semiconductor (MFIS) structures
Ma Jian-Hua (马建华), Meng Xiang-Jian (孟祥建), Lin Tie (林铁), Liu Shi-Jian (刘世建), Zhang Xiao-Dong (张晓东), Sun Jing-Lan (孙璟兰), Chu Jun-Hao (褚君浩). Chin. Phys. B, 2005, 14(11): 2352-2359.
[3] Grain size and its distribution in NiTi thin films sputter-deposited on heated substrates
Li Yong-Hua (李永华), Meng Fan-Ling (孟繁玲), Qiu Deng-Li (仇登利), Wang Yi (王一), Zheng Wei-Tao (郑伟涛), Wang Yu-Ming (王煜明). Chin. Phys. B, 2004, 13(8): 1315-1319.
[4] Effects of underlayer materials and substrate temperatures on the structural and magnetic properties of Nd2Fe14B films
Ma Yun-Gui (马云贵), Yang Zheng (杨正), M. Matsumoto, A. Morisako, S. Takei. Chin. Phys. B, 2004, 13(11): 1969-1974.
No Suggested Reading articles found!