ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Passively mode-locked 2-μm Tm:YAP laser with a double-wall carbon nanotube absorber |
Qu Zun-Shi(曲遵世)a), Wang Yong-Gang(王勇刚)b), Liu Jie(刘杰)a)†, Zheng Li-He(郑丽和)c), Su Liang-Bi(苏良碧)c), and Xu Jun(徐军)c) |
a. College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; b. Research Center for Applied Sciences, Academia Sinica, Taiwan, 30010, China; c. Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract We report on a diode-pumped passively continuous wave (cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube (DWCNT) absorber operating at a wavelength of 2023 nm for the first time, to the best our knowledge. The DWCNT absorber is fabricated on a hydrophilic quartz substrate by using the vertical evaporation technique. The output power is as high as 375 mW. A stable pulse train with a repetition rate of 72.26 MHz is generated with a highest single pulse energy of 5.2 μJ.
|
Received: 21 June 2011
Revised: 21 September 2011
Accepted manuscript online:
|
PACS:
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.70.Km
|
(Infrared transmitting materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61078032) and the Science and Technology Funds on Solide-State Laser Laboratory of China (Grant No. 9140C0403011106). |
Corresponding Authors:
Liu Jie
E-mail: jieliu@sdnu.edu.cn
|
Cite this article:
Qu Zun-Shi(曲遵世), Wang Yong-Gang(王勇刚), Liu Jie(刘杰), Zheng Li-He(郑丽和), Su Liang-Bi(苏良碧), and Xu Jun(徐军) Passively mode-locked 2-μm Tm:YAP laser with a double-wall carbon nanotube absorber 2012 Chin. Phys. B 21 064211
|
[1] |
Targ R, Steakley B C, Hawley J G, Ames L L, Forney P, Swanson D, Stone R, Otto R G, Zarifis V, Brockman P, Calloway R S, Klein S H and Robinson P 1996 Appl. Opt. 35 7117
|
[2] |
Theisen D, Ott V, Bernd H W, Danicke V, Keller R and Brinkmann R 2003 Proc. SPIE 5142 96
|
[3] |
Keller U 2003 Nature 424 831
|
[4] |
Kong L J, Xiao X S and Yang C X 2011 Chin. Phys. B 20 024207
|
[5] |
Haxsen F, Ruehl A, Engelbrecht M, Wandt D, Morgner U and Kracht D 2008 Opt. Express 16 20471
|
[6] |
Sharp R C, Spock D E, Pan N and Elliot J 1996 Opt. Lett. 21 881
|
[7] |
Kivistö S, Hakulinen T, Guina M and Okhotnikov O G 2007 IEEE Photon. Technol. Lett. 19 934
|
[8] |
Solodyankin M A, Obraztsova E D, Lobach A S, Chernov A I, Tausenev A V, Konov V I and Dianov E M 2008 Opt. Lett. 33 1336
|
[9] |
Ouyang F P, Peng S L, Chen L N, Sun S Y and Xu H 2011 Chin. Phys. B 20 027102
|
[10] |
Denisov I A, Skoptsov N A, Gaponenko M S, Malyarevich A M, Yumashev K V and Lipovskii A A 2009 Opt. Lett. 34 3403
|
[11] |
Yang K J, Bromberger H, Ruf H, Schäfer H, Neuhaus J, Dekorsy T, Grimm C V B, Helm M, Biermann K and K黱ze H 2010 Opt. Express 18 6537
|
[12] |
Payne S A, Chase L L, Smith L K, Kway W L and Krupke W F 1992 IEEE J. Quantum Electron. 28 2619
|
[13] |
Yao B Q, Tian Y, Li G and Wang Y Z 2010 Opt. Express 18 13573
|
[14] |
Zhang L, Wang Y G, Yu H J, Sun L, Guo L, Hou W, Tang J, Lin X C and Li J M 2011 Laser Phys. 21 454
|
[15] |
Chen H R, Wang Y G, Tsai C Y, Lin K H, Chang T Y, Tang J and Hsieh W F 2011 Opt. Lett. 36 1284
|
[16] |
Hertel T, Hagen A, Hagen V, Talalaev V, Arnold K, Hennrich F and Flahaut E 2005 Nano Lett. 5 511
|
[17] |
Maeng I, Kang C, Oh S J, Son J H, An K H and Lee Y H 2007 Appl. Phys. Lett. 90 051914
|
[18] |
Miao L, Liu H J, Hu Y, Zhou X, Hu C Z and Shi J 2010 Chin. Phys. B 19 016301
|
[19] |
Liu J, Zheng K H, Liu Z, Hu L J and Sun L F 2010 Chin. Phys. B 19 066101
|
[20] |
Yang K J, Zhao S Z, Li G Q, Li M, Li D C, Wang J and An J 2007 Opt. Mater. 29 1153
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|