Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030504    DOI: 10.1088/1674-1056/21/3/030504
GENERAL Prev   Next  

Adaptive synchronization of chaos in permanent magnet synchronous motors based on passivity theory

Wei Du-Qu(韦笃取) a)†, Zhang Bo(张波)b), and Luo Xiao-Shu(罗晓曙)a)
a. College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China;
b. College of Electric Power, South China University of Technology, Guangzhou 510640, China
Abstract  An adaptive synchronization control method is proposed for chaotic permanent magnet synchronous motors based on the property of a passive system. We prove that the controller makes the synchronization error system between the driving and the response systems not only passive but also asymptotically stable. The simulation results show that the proposed method is effective and robust against uncertainties in the systemic parameters.
Keywords:  passivity theory      synchronization control      adaptive law      permanent magnet synchronous motor  
Received:  27 July 2011      Revised:  22 October 2011      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 50937001) the National Natural Science Foundation of China (Grant Nos. 10862001 and 10947011), and the Construction of Key Laboratories in Universities of Guangxi, China (Grant No. 200912).
Corresponding Authors:  Wei Du-Qu,weiduqu@mailbox.gxnu.edu.cn     E-mail:  weiduqu@mailbox.gxnu.edu.cn

Cite this article: 

Wei Du-Qu(韦笃取), Zhang Bo(张波), and Luo Xiao-Shu(罗晓曙) Adaptive synchronization of chaos in permanent magnet synchronous motors based on passivity theory 2012 Chin. Phys. B 21 030504

[1] Wei D Q and Zhang B 2009 emphChin. Phys. B 18 1399
[2] Wei D Q, Zhang B, Qiu D Y and Luo X S 2009 emphActa Phys. Sin. 58 6026 (in Chinese)
[3] Li Z, Park J B, Joo Y, Zhang B and Chen G R 2002 emphIEEE Trans. Circ. Sys. I 49 383
[4] Wei D Q, Zhang B, Qiu D Y and Luo X S 2010 emphIEEE Trans. Circ. Syst. II 57 456
[5] Wei D Q, Luo X S, Wang B H and Fang J Q 2007 emphPhys. Lett. A 363 71
[6] Ataei M, Kiyoumarsi A and Ghorbani B 2010 emphPhys. Lett. A 374 4226
[7] Yu J, Chen B, Yu H and Gao J 2011 emphNonlinear Analysis: Real World Applications 12 671
[8] Loría A 2009 emphIEEE Trans. Circ. Syst. I 56 2109
[9] Ye S and Chau K T 2007 emphIEEE Trans Industr. Electr. 54 2024
[10] Wang Z and Chau K T 2008 emphChaos Soliton. Fract. 36 694
[11] Pecora L M and Carroll TL 1990 emphPhys. Rev. Lett. 64 821
[12] Ma J, Zhang A H and Xia Y F 2010 emphAppl. Math. Comput. 215 3318
[13] Zheng H Q and Jing Y W 2011 emphChin. Phys. B 20 060504
[14] Wu B, Liu Y and Lu J Q 2011 emphChin. Phys. B 20 050508
[15] Willems J C 1972 emphArch. Rational Mech. Anal. 45 321
[16] Byrnes C I, Isidori A and Willems J C 1991 emphIEEE Trans. Auto. Control 36 1228
[17] Wang F Q and Liu C X 2006 emphChin. Phys. 15 1971
[18] Zhang Q and Lu J 2008 emphChin. Phys. B 17 492
[19] Wu C J, Zhang Y B and Yang N N 2011 emphChin. Phys. B 20 060505
[20] Pyragas K, Pyragas V, Kiss I Z and Hudson J L 2004 emphPhys. Rev. E 70 026215
[21] Ma J, Su W T and Gao J Z 2010 emphActa Phys. Sin. 59 1554 (in Chinese)
[22] Wei D Q, Luo X S, Zhang B and Qin Y H 2010 emphNonlinear Analysis: Real World Applications 11 1752
[23] Coria L N and Starkov K E 2009 emphNonlinear Sci. Numer. Simulat. 14 3879
[1] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang (陈强), Nan Yu-Rong (南余荣), Zheng Heng-Huo (郑恒火), Ren Xue-Mei (任雪梅). Chin. Phys. B, 2015, 24(11): 110504.
[2] Backstepping-based lag synchronization of complex permanent magnet synchronous motor system
Wang Xing-Yuan (王兴元), Zhang hao (张昊). Chin. Phys. B, 2013, 22(4): 048902.
[3] Controlling and synchronization of a hyperchaotic system based on passive control
Zhu Da-Rui (朱大锐), Liu Chong-Xin (刘崇新), Yan Bing-Nan (燕并男). Chin. Phys. B, 2012, 21(9): 090509.
[4] Fractional-order permanent magnet synchronous motor and its adaptive chaotic control
Li Chun-Lai (李春来), Yu Si-Min (禹思敏), Luo Xiao-Shu (罗晓曙). Chin. Phys. B, 2012, 21(10): 100506.
[5] Chaos in complex motor networks induced by Newman–Watts small-world connections
Wei Du-Qu(韦笃取), Luo Xiao-Shu(罗晓曙), and Zhang Bo(张波) . Chin. Phys. B, 2011, 20(12): 128903.
[6] Impulsive control for permanent magnet synchronous motors with uncertainties: LMI approach
Li Dong(李东), Wang Shi-Long(王时龙), Zhang Xiao-Hong(张小洪), and Yang Dan(杨丹). Chin. Phys. B, 2010, 19(1): 010506.
[7] Circuitry implementation of a novel four-dimensional nonautonomous hyperchaotic Liu system and its experimental studies on synchronization control
Luo Xiao-Hua(罗小华), Zhou Wei(周围), Li Rui(李锐), Liang Yi-Long(梁亦龙), and Luo Ming-Wei(罗明伟). Chin. Phys. B, 2009, 18(6): 2168-2175.
[8] Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory
Wei Du-Qu(韦笃取) and Zhang Bo(张波). Chin. Phys. B, 2009, 18(4): 1399-1403.
[9] Impulsive control of permanent magnet synchronous motors with parameters uncertainties
Li Dong(李东), Wang Shi-Long(王时龙), Zhang Xiao-Hong(张小洪), Yang Dan(杨丹), and Wang Hui(王慧) . Chin. Phys. B, 2008, 17(5): 1678-1684.
No Suggested Reading articles found!