|
|
Network-topology-adaptive quantum conference protocols |
Zhang Sheng(张盛)†, Wang Jian(王剑), Tang Chao-Jing(唐朝京), and Zhang Quan(张权) |
Department of Communication Engineering, National University of Defense Technology of China, Changsha 410073, China |
|
|
Abstract As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols.
|
Received: 20 February 2011
Revised: 07 April 2011
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60872052). |
Cite this article:
Zhang Sheng(张盛), Wang Jian(王剑), Tang Chao-Jing(唐朝京), and Zhang Quan(张权) Network-topology-adaptive quantum conference protocols 2011 Chin. Phys. B 20 080306
|
[1] |
Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers Systems and Signal Processings Bangalore, India, p. 175
|
[2] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
[3] |
Wen H, Han Z F, Guo G C and Hong P L 2009 Chin. Phys. B 18 46
|
[4] |
Wang H, Yan L S, Pan W, Luo B, Guo Z and Xu M F 2011 Acta Phys. Sin. 60 56 (in Chinese)
|
[5] |
Biham E, Huttner B and Mor T 1996 Phys. Rev. A 54 2651
|
[6] |
Townsend P D 1997 Nature 385 47
|
[7] |
Townsend P D 1998 Opt. Fibre Technol. 4 345
|
[8] |
Fernandez V, Collins R J, Gordon K J, Townsend P D and Buller G S 2007 IEEE J. Quantum Electron. 43 130
|
[9] |
Poppe A, Peev M and Maurhart O 2008 Int. J. Quantum Infor. 6 1
|
[10] |
Brassard G, Bussiéres F, Godbout N, Godbout N and Lacroix S 2003 SPIE 5260 149
|
[11] |
Toliver P, Runser R J, Chapuran T E, Jackel J L, Banwell T C, Goodman M S, Hughes R J, Peterson C G, Derkacs D, Nordholt J E, Mercer L, McNown S, Goldman A and Blake J 2003 Technol. Lett. 15 1669
|
[12] |
Dai J L and Zhang W H 2009 Chin. Phys. B 18 426
|
[13] |
Elliott C 2002 New J. Phys. 4 46
|
[14] |
Elliott C, Colvin A, Pearson D, Pikalo O, Schlafer J and Yeh H 2005 Quantum Information and Computation III (Proc. SPIE Vol. 5815) p. 138 (arXiv: quant-ph/ 0503058)
|
[15] |
www.secoqc.net.
|
[16] |
Alléaume R, Bouda J, Branciard C, Debuisschert T, Dianati M, Gisin N, Godfrey M, Grangier P, Langer T, Leverrier A, Lutkenhaus N, Painchault P, Peev M, Poppe A, Pornin T, Rarity J, Renner R, Ribordy G, Riguidel M, Salvail L, Shields A, Weinfurter H and Zeilinger A 2007 arXiv: quant-ph/0701168
|
[17] |
Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J F, Fasel S, Fossier S, Fürst M, Gautier J D, Gay O, Gisin N, Grangier P, Happe A, Hasani Y, Hentschel M, Hübel H, Humer G, L"anger T, LegréM, Lieger R, Lodewyck J, Lorünser T, Lütkenhaus N, Marhold A, Matyus T, Maurhart O, Monat L, Nauerth S, Page J B, Poppe A, Querasser E, Ribordy G, Robyr S, Salvail L, Sharpe A W, Shields A J, Stucki D, Suda M, Tamas C, Themel T, Thew R T, Thoma Y, Treiber A, Trinkler P, Tualle-Brouri R, Vannel F, Walenta N, Weier H, Weinfurter H, Wimberger I, Yuan Z L, Zbinden H and Zeilinger A 2009 New J. Phys. 11 075001
|
[18] |
Chen T Y, Liang H, Liu Y, Cai W Q, Ju L, Liu W Y, Wang J, Yin H, Chen K, Chen Z B, Peng C Z and Pan J W 2009 Opt. Express 17 6540
|
[19] |
Chen T Y, Wang J, Liang H, Liu W Y, Liu Y, Xiao J, Wang Y, Wan X, Cai W Q, Ju L, Chen L K, Wang L J, Gao Y, Chen K, Peng C Z, Chen Z B and Pan J W arXiv: quant-ph/1008.1508
|
[20] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[21] |
Bostr"om K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
|
[22] |
Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
|
[23] |
Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601
|
[24] |
Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Front. Phys. China 2 251
|
[25] |
Xia Y and Song H S 2008 Phys. Lett. A 364 117
|
[26] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 44305
|
[27] |
Yan F L and Zhang X 2004 Eur. Phys. J. B 41 75
|
[28] |
Zhang Z J and Man Z X 2005 Chin. Phys. Lett. 22 22
|
[29] |
Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
|
[30] |
Wang J, Zhang Q and Tang C J 2007 Commun. Theor. Phys. 48 637
|
[31] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[32] |
Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
|
[33] |
Lee H, Lim J and Yang H 2006 Phys. Rev. A 73 042305
|
[34] |
He G Q, Zhu J and Zeng G H 2006 Phys. Rev. A 73 01231
|
[35] |
Pirandola S, Braunstein S L, Mancini S and Lloyd S 2008 Europhys. Lett. 84 20013
|
[36] |
Gao T, Yan F L and Wang Z X 2005 J. Phys. A: Math. Gen. 38 5761
|
[37] |
Jin X R, Jin X, Zhang Y Q, Zhang S, Hong K, Yeon K H and Um C I 2006 Phys. Lett. A 354 67
|
[38] |
Man Z X, Xia Y J and An B N 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3855
|
[39] |
Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. Lett. bf24 23 arXiv: quant-ph/0612017v13
|
[40] |
Gu B, Li C Q and Chen Y L 2009 Chin. Phys. B 18 2137
|
[41] |
Shi Y Y and Soljanin E 2006 IEEE 40th Annual Conference on Information Science and System 2 871
|
[42] |
Mayers D 2001 ACM 48 351
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|