Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080306    DOI: 10.1088/1674-1056/20/8/080306
GENERAL Prev   Next  

Network-topology-adaptive quantum conference protocols

Zhang Sheng(张盛), Wang Jian(王剑), Tang Chao-Jing(唐朝京), and Zhang Quan(张权)
Department of Communication Engineering, National University of Defense Technology of China, Changsha 410073, China
Abstract  As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols.
Keywords:  quantum conference      quantum network      network topology      quantum multicast  
Received:  20 February 2011      Revised:  07 April 2011      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60872052).

Cite this article: 

Zhang Sheng(张盛), Wang Jian(王剑), Tang Chao-Jing(唐朝京), and Zhang Quan(张权) Network-topology-adaptive quantum conference protocols 2011 Chin. Phys. B 20 080306

[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers Systems and Signal Processings Bangalore, India, p. 175
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[3] Wen H, Han Z F, Guo G C and Hong P L 2009 Chin. Phys. B 18 46
[4] Wang H, Yan L S, Pan W, Luo B, Guo Z and Xu M F 2011 Acta Phys. Sin. 60 56 (in Chinese)
[5] Biham E, Huttner B and Mor T 1996 Phys. Rev. A 54 2651
[6] Townsend P D 1997 Nature 385 47
[7] Townsend P D 1998 Opt. Fibre Technol. 4 345
[8] Fernandez V, Collins R J, Gordon K J, Townsend P D and Buller G S 2007 IEEE J. Quantum Electron. 43 130
[9] Poppe A, Peev M and Maurhart O 2008 Int. J. Quantum Infor. 6 1
[10] Brassard G, Bussiéres F, Godbout N, Godbout N and Lacroix S 2003 SPIE 5260 149
[11] Toliver P, Runser R J, Chapuran T E, Jackel J L, Banwell T C, Goodman M S, Hughes R J, Peterson C G, Derkacs D, Nordholt J E, Mercer L, McNown S, Goldman A and Blake J 2003 Technol. Lett. 15 1669
[12] Dai J L and Zhang W H 2009 Chin. Phys. B 18 426
[13] Elliott C 2002 New J. Phys. 4 46
[14] Elliott C, Colvin A, Pearson D, Pikalo O, Schlafer J and Yeh H 2005 Quantum Information and Computation III (Proc. SPIE Vol. 5815) p. 138 (arXiv: quant-ph/ 0503058)
[15] www.secoqc.net.
[16] Alléaume R, Bouda J, Branciard C, Debuisschert T, Dianati M, Gisin N, Godfrey M, Grangier P, Langer T, Leverrier A, Lutkenhaus N, Painchault P, Peev M, Poppe A, Pornin T, Rarity J, Renner R, Ribordy G, Riguidel M, Salvail L, Shields A, Weinfurter H and Zeilinger A 2007 arXiv: quant-ph/0701168
[17] Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J F, Fasel S, Fossier S, Fürst M, Gautier J D, Gay O, Gisin N, Grangier P, Happe A, Hasani Y, Hentschel M, Hübel H, Humer G, L"anger T, LegréM, Lieger R, Lodewyck J, Lorünser T, Lütkenhaus N, Marhold A, Matyus T, Maurhart O, Monat L, Nauerth S, Page J B, Poppe A, Querasser E, Ribordy G, Robyr S, Salvail L, Sharpe A W, Shields A J, Stucki D, Suda M, Tamas C, Themel T, Thew R T, Thoma Y, Treiber A, Trinkler P, Tualle-Brouri R, Vannel F, Walenta N, Weier H, Weinfurter H, Wimberger I, Yuan Z L, Zbinden H and Zeilinger A 2009 New J. Phys. 11 075001
[18] Chen T Y, Liang H, Liu Y, Cai W Q, Ju L, Liu W Y, Wang J, Yin H, Chen K, Chen Z B, Peng C Z and Pan J W 2009 Opt. Express 17 6540
[19] Chen T Y, Wang J, Liang H, Liu W Y, Liu Y, Xiao J, Wang Y, Wan X, Cai W Q, Ju L, Chen L K, Wang L J, Gao Y, Chen K, Peng C Z, Chen Z B and Pan J W arXiv: quant-ph/1008.1508
[20] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[21] Bostr"om K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[22] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[23] Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601
[24] Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Front. Phys. China 2 251
[25] Xia Y and Song H S 2008 Phys. Lett. A 364 117
[26] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 44305
[27] Yan F L and Zhang X 2004 Eur. Phys. J. B 41 75
[28] Zhang Z J and Man Z X 2005 Chin. Phys. Lett. 22 22
[29] Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
[30] Wang J, Zhang Q and Tang C J 2007 Commun. Theor. Phys. 48 637
[31] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[32] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
[33] Lee H, Lim J and Yang H 2006 Phys. Rev. A 73 042305
[34] He G Q, Zhu J and Zeng G H 2006 Phys. Rev. A 73 01231
[35] Pirandola S, Braunstein S L, Mancini S and Lloyd S 2008 Europhys. Lett. 84 20013
[36] Gao T, Yan F L and Wang Z X 2005 J. Phys. A: Math. Gen. 38 5761
[37] Jin X R, Jin X, Zhang Y Q, Zhang S, Hong K, Yeon K H and Um C I 2006 Phys. Lett. A 354 67
[38] Man Z X, Xia Y J and An B N 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3855
[39] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. Lett. bf24 23 arXiv: quant-ph/0612017v13
[40] Gu B, Li C Q and Chen Y L 2009 Chin. Phys. B 18 2137
[41] Shi Y Y and Soljanin E 2006 IEEE 40th Annual Conference on Information Science and System 2 871
[42] Mayers D 2001 ACM 48 351
[1] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[2] Quantum multicast communication over the butterfly network
Xing-Bo Pan(潘兴博), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), Zhao Dou(窦钊), Zong-Peng Li(李宗鹏), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(1): 010305.
[3] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[4] Quantum light storage in rare-earth-ion-doped solids
Yi-Lin Hua(华怡林), Zong-Quan Zhou(周宗权), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2018, 27(2): 020303.
[5] Characterization of the pairwise correlations in different quantum networks consisting of four-wave mixers and beamsplitters
Jian Qi(祁健), Jun Xin(忻俊), Hai-Long Wang(王海龙), Jie-Tai Jing(荆杰泰). Chin. Phys. B, 2017, 26(7): 074214.
[6] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[7] Efficient schemes of joint remote preparation with a passive receiver via EPR pairs
Ma Song-Ya (马松雅), Gao Cong (高聪), Luo Ming-Xing (罗明星). Chin. Phys. B, 2015, 24(11): 110308.
[8] Network dynamics and its relationships to topology andcoupling structure in excitable complex networks
Zhang Li-Sheng (张立升), Gu Wei-Feng (谷伟凤), Hu Gang (胡岗), Mi Yuan-Yuan (弭元元). Chin. Phys. B, 2014, 23(10): 108902.
[9] A full quantum network scheme
Ma Hai-Qiang (马海强), Wei Ke-Jin (韦克金), Yang Jian-Hui (杨建会), Li Rui-Xue (李瑞雪), Zhu Wu (朱武). Chin. Phys. B, 2014, 23(10): 100307.
[10] A quantum network for implementation of the optimal quantum cloning
Dai Jie-Lin(戴结林) and Zhang Wen-Hai(张文海). Chin. Phys. B, 2009, 18(2): 426-429.
[11] The queueing model for quantum key distribution network
Wen Hao(温浩), Han Zheng-Fu(韩正甫), Guo Guang-Can(郭光灿), and Hong Pei-Lin(洪佩琳). Chin. Phys. B, 2009, 18(1): 46-50.
No Suggested Reading articles found!