Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 106601    DOI: 10.1088/1674-1056/20/10/106601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard–Jones fluids by non-equilibrium molecular dynamic simulation

Ahmed Asad and Wu Jiang-Tao(吴江涛)
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard-Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-$\alpha$, where $\alpha$ is an adjustable parameter and N is the number of particles. It is observed that the values of α < 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations from the literature.
Keywords:  self-diffusion coefficient      non-equilibrium molecular dynamic simulation      Lennard-Jones fluid      critical dynamics  
Received:  09 December 2010      Revised:  26 April 2011      Accepted manuscript online: 
PACS:  66.10.-x (Diffusion and ionic conduction in liquids)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51076128) and the National High Technology Research and Development Program of China (Grant No. 2009AA05Z107).

Cite this article: 

Ahmed Asad and Wu Jiang-Tao(吴江涛) Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard–Jones fluids by non-equilibrium molecular dynamic simulation 2011 Chin. Phys. B 20 106601

[1] Allen M P and Tildesley D J 1990 Computer Simulation of Liquids (Oxford: Clarendon Press) p. 57
[2] Dünweg B and Kremer K 1991 Phys. Rev. Lett. 66 2996
[3] Dünweg B and Kremer K 1993 J. Chem. Phys. 99 6983
[4] Yeh I C and Hummer G 2004 J. Phys. Chem. B 108 15873
[5] Smith P E and van Gunsteren W F 1994 J. Mol. Biol. 236 629
[6] Debendetti P G and Reid R C 1986 AIChE J. 32 2034
[7] Boon J P and Yip S 1980 Molecular Hydrodynamics (New York: McGraw-Hill) pp. 105-144
[8] Kataoka Y and Fujita M 1995 Bull. Chem. Soc. Jpn. 68 152
[9] Mecke M, Müller A, Winkelmann J, Vrabec J, Fischer J, Span R and Wagner W 1996 Int. J. Thermophys. 17 391
[10] Michels J P J and Trappeniers N J 1975 Chem. Phys. Lett. 33 195
[11] Evans D J 1981 Phys. Rev. A 23 1988
[12] Cummings P T and Varner T L J 1988 J. Chem. Phys. 89 6391
[13] Kubo R 1966 Rep. Prog. Phys. 29 255
[14] Zwanzig R 1965 Ann. Rev. Phys. Chem. 16 67
[15] Landau L D and Lifshitz E M 1980 Statistical Physics 3rd edn. (New York: Pergamon) p. 171
[16] Drozdov A N and Tucker S C 2001 J. Chem. Phys. 114 4912
[17] Harris K R 1978 Physica A 93 593
[18] Peereboom P W E, Luigies H and Prins K O 1989 Physica A 156 260
[19] Qin Y and Eu B C 2009 J. Phys. Chem. B 113 4751
[20] Fujimoto S and Yu Y X 2010 Chin. Phys. B 19 088701
[21] Zhu R Z and Yan H 2011 Chin. Phys. B 20 016801
[22] Wang H F, Chu W G, Guo Y J and Jin H 2010 Chin. Phys. B 19 076501
[23] Michels J P J and Trappeniers N J 1978 Physica A 90 179
[24] Michels J P J and Trappeniers N J 1985 Physica A 133 281
[25] Heyes D M 1988 Phys. Rev. B 37 5677
[26] Straub J E 1992 Mol. Phys. 76 373
[27] Rowley R L and Painter M M 1997 Int. J. Thermophys. 18 1109
[28] Castillo R, Garza C and Ramos S 1994 J. Phys. Chem. 98 4188
[29] Alder B J, Gass D M and Wainwright T E 1970 J. Chem. Phys. 53 3813
[30] Erpenbeck J J and Wood W W 1991 Phys. Rev. A 43 4254
[31] Fushiki M 2003 Phys. Rev. E 68 021203
[32] Mark P and Nilsson L J 2002 Comput. Chem. 23 1211
[33] Ashurst W T and Hoover W G 1975 Theoretical Chemistry Advances and Perspectives Vol. 1 (New York: Academic Press) p. 159
[34] Maddox M W, Goodyear G and Tucker S C 2000 J. Phys. Chem. B 104 6248
[35] Maddox M W, Goodyear G and Tucker S C 2000 J. Phys. Chem. B 104 6266
[36] Kolafa J, Labik S and Malijevsky' A 2005 Phys. Chem. Chem. Phys. 6 2335
[37] Heyes D M, Cass J, Powles J G and Evans W A B 2007 J. Phys. Chem. B 111 1455
[38] Miller T F and Manolopoulos D E 2005 J. Chem. Phys. 122 184503
[39] Nuevo M J, Morales J J and Heyes D M 1997 Phys. Rev. E 55 4217
[40] Nie C, Zhou Y H, Marlow W H and Hassan Y A 2008 J. Phys.: Condens. Matter 20 415105
[410] van der Spoel D, van Maaren P J and Berendsen H J C 1998 J. Chem. Phys. 108 10220
[42] Dunweg B and Kremer K 1993 J. Chem. Phys. 99 6983
[43] Yeh I C and Hummer G 2004 J. Phys. Chem. B 108 15873
[1] Anisotropic self-diffusion of fluorinated poly(methacrylate) in metal-organic frameworks assessed with molecular dynamics simulation
Tao Lu(鲁桃), Biao Xu(徐彪), Fei-Hong Ye(叶飞宏), Xin-Hui Zhou(周馨慧), Yun-Qing Lu(陆云清), Jin Wang(王瑾). Chin. Phys. B, 2017, 26(12): 123104.
[2] Molecular dynamics simulation of self-diffusion coefficients for liquid metals
Ju Yuan-Yuan (巨圆圆), Zhang Qing-Ming (张庆明), Gong Zi-Zheng (龚自正), Ji Guang-Fu (姬广富). Chin. Phys. B, 2013, 22(8): 083101.
No Suggested Reading articles found!