Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 104201    DOI: 10.1088/1674-1056/20/10/104201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Half-plane diffraction of Gaussian beams carrying two vortices of equal charges

He De(何德)a)b),Gao Zeng-Hui(高曾辉) a)† , and Lü Bai-Da(吕百达)c)
a Key Laboratory of Computational Physics of Sichuan Province, Yibin University, Yibin 644000, China; b Department of Physical Science and Electronic Engineering, Yibin University, Yibin 644000, China; c Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064, China
Abstract  This paper derives explicit expressions for the propagation of Gaussian beams carrying two vortices of equal charges m=±1 diffracted at a half-plane screen, which enables the study of the dynamic evolution of vortices in the diffraction field. It shows that there may be no vortices, a pair or several pairs of vortices of opposite charges m=+1, -1 in the diffraction field. Pair creation, annihilation and motion of vortices may appear upon propagation. The off-axis distance additionally affects the evolutionary behaviour. In the process the total topological charge is equal to zero, which is unequal to that of the vortex beam at the source plane. A comparison with the free-space propagation of two vortices of equal charges and a further extension are made.
Keywords:  two vortices of equal charges      diffraction at a half-plane screen      dynamic evolution  
Received:  25 February 2011      Revised:  29 April 2011      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874125) and the Foundation of Education Department of Sichuan Province of China (Grant No. 10ZA063).

Cite this article: 

He De(何德), Gao Zeng-Hui(高曾辉), and Lü Bai-Da(吕百达) Half-plane diffraction of Gaussian beams carrying two vortices of equal charges 2011 Chin. Phys. B 20 104201

[1] Soskin M S and Vasnetsov M V 2001 Prog. Opt. 42 219
[2] Molina-Terriza G, Recolons J, Torres J P, Torner L and Wright E M 2001 Phys. Rev. Lett. 87 023902-1
[3] Schwarz U T, Sogomonian S and Maier M 2002 Opt. Commun. 208 255
[4] Orlov S, Regelskis K, Smilgevicius V and Stabinis A 2004 J. Opt. A: Pure Appl. Opt. 6 255
[5] Dong L W, Ye F W, Wang J D and Li Y P 2004 Acta Phys. Sin. 53 3353 (in Chinese)
[6] Wang L, Wang Q F, Wang X Q and Lü B D 2007 Acta Phys. Sin. 56 201 (in Chinese)
[7] Cheng K, Liu P S and Lü B D 2008 Chin. Phys. B 17 1743
[8] Indebetouw G 1993 J. Mod. Opt. 40 73
[9] Freund I 1999 Opt. Commun. 163 230
[10] Karman G P, Beijersbergen M W, van Duijl A and Woerdman J P 1997 Opt. Lett. 22 1503
[11] Karman G P, Beijersbergen M W, Duijl A, van Bouwmeester D and Woerdman J P 1998 J. Opt. Soc. Am. A 15 884
[12] Masajada J 2000 Opt. Commun. 175 289
[13] Masajada J 2001 Proc. SPIE 4356 178
[14] Vasnetsov M V, Marienko I G and Soskin M S 2000 JEPT Lett. 71 130
[15] Liu P S and Lü B D 2008 Opt. Laser Tech. 40 227
[16] Luo Y M and Lü B D 2009 J. Opt. Soc. Am. A 26 1961
[17] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series, and Products, (New York: Academic Press) p. 337
[18] Freund I and Shvartsman N 1994 Phys. Rev. A 50 5164
[19] Cheng K and Lü B D 2009 J. Mod. Opt. 56 1119
[1] Dynamic evolutionary community detection algorithms based on the modularity matrix
Chen Jian-Rui (陈建芮), Hong Zhi-Min (洪志敏), Wang Li-Na (汪丽娜), Wu Lan (乌兰). Chin. Phys. B, 2014, 23(11): 118903.
[2] Dynamic aggregation evolution of competitive societies of cooperative and noncooperative agents
Lin Zhen-Quan (林振权), Ye Gao-Xiang (叶高翔). Chin. Phys. B, 2013, 22(5): 058201.
[3] 2D parameter optimization of Ne-like Cr x-ray laser on slab
Cheng Tao(程涛), Li Ying-Jun(李英骏), Meng Li-Min(孟立民), Yuan Su-Ying(袁素英), and Zhang Jie(张杰). Chin. Phys. B, 2009, 18(1): 203-208.
No Suggested Reading articles found!