|
|
Development and characteristic analysis of a field-plated Al2O3/AlInN/GaN MOS–HEMT |
Mao Wei(毛维)a)† , Yang Cui(杨翠) b), Hao Yao(郝跃)a), Zhang Jin-Cheng(张进成)a), Liu Hong-Xia(刘红侠) a), Bi Zhi-Wei(毕志伟)a), Xu Sheng-Rui(许晟瑞)a), Xue Jun-Shuai(薛军帅)a), Ma Xiao-Hua(马晓华)a), Wang Chong(王冲)a), Yang Lin-An(杨林安)a), Zhang Jin-Feng(张金风)a), and Kuang Xian-Wei(匡贤伟)a) |
a Key Lab of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; b School of Technical Physics, Xidian University, Xi'an 710071, China |
|
|
Abstract We present an AlInN/AlN/GaN MOS–HEMT with a 3 nm ultra-thin atomic layer deposition (ALD) Al2O3 dielectric layer and a 0.3 μm field-plate (FP)-MOS–HEMT. Compared with a conventional AlInN/AlN/GaN HEMT (HEMT) with the same dimensions, a FP-MOS–HEMT with a 0.6 μm gate length exhibits an improved maximum drain current of 1141 mA/mm, an improved peak extrinsic transconductance of 325 mS/mm and effective suppression of gate leakage in both the reverse direction (by about one order of magnitude) and the forward direction (by more than two orders of magnitude). Moreover, the peak extrinsic transconductance of the FP-MOS–HEMT is slightly larger than that of the HEMT, indicating an exciting improvement of transconductance performance. The sharp transition from depletion to accumulation in the capacitance–voltage (C–V) curve of the FP-MOS–HEMT demonstrates a high-quality interface of Al2O3/AlInN. In addition, a large off-state breakdown voltage of 133 V, a high field-plate efficiency of 170 V/μ m and a negligible double-pulse current collapse is achieved in the FP-MOS–HEMT. This is attributed to the adoption of an ultra-thin Al2O3 gate dielectric and also of a field-plate on the dielectric of an appropriate thickness. The results show a great potential application of the ultra-thin ALD-Al2O3 FP-MOS–HEMT to deliver high currents and power densities in high power microwave technologies.
|
Received: 04 September 2010
Revised: 25 September 2010
Accepted manuscript online:
|
PACS:
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. JY10000925002), the National Key Science and Technology Special Project (Grant No. 2008ZX01002-002), the National Natural Science Foundation of China (Grant Nos. 60736033, 60976068 and 61076097), New Teacher Foundation for Doctoral Program of Ministry of Education of China (Grant No. 200807011012). |
Cite this article:
Mao Wei(毛维), Yang Cui(杨翠), Hao Yao(郝跃), Zhang Jin-Cheng(张进成), Liu Hong-Xia(刘红侠), Bi Zhi-Wei(毕志伟), Xu Sheng-Rui(许晟瑞), Xue Jun-Shuai(薛军帅), Ma Xiao-Hua(马晓华), Wang Chong(王冲), Yang Lin-An(杨林安), Zhang Jin-Feng(张金风), and Kuang Xian-Wei(匡贤伟) Development and characteristic analysis of a field-plated Al2O3/AlInN/GaN MOS–HEMT 2011 Chin. Phys. B 20 017203
|
[1] |
Kuzm'hik J 2001 IEEE Electron Device Lett. 22 510
|
[2] |
Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N, Darakchieva V, Monemar B, Lorenz M and Ramm G 2008 J. Appl. Phys. 103 093714
|
[3] |
Medjdoub F, Carlin J F, Gonschorek M, Py M A, Grandjean N, Vandenbrouck S, Gaquiere C, Dejaeger J C and Kohn E 2006 Electronics Lett. 42 779
|
[4] |
Sarazin N, Morvan E, di Forte Poisson M A, Oualli M, Gaqui`ere C, Jardel O, Drisse O, Tordjman M, Magis M and Delage S L 2010 IEEE Electron Device Lett. 31 11
|
[5] |
Donoval D, Chv'ala A, vSramat'y R, Kov'avc J, Carlin J F, Grandjean N, Pozzovivo G, Kuzm'hik J, Pogany D, Strasser G and Kordovs P 2010 Appl. Phys. Lett. 96 223501
|
[6] |
Chikhaoui W, Bluet J M, Poisson M A, Sarazin N, Dua C and Bru-Chevallier C 2010 Appl. Phys. Lett. 96 072107
|
[7] |
T"ulek R, Ilgaz A, G"okden S, Teke A, "Ozt"urk M K, Kasap M, "Ozccelik S, Arslan E and "Ozbay E 2009 J. Appl. Phys. 105 013707
|
[8] |
Medjdoub F, Sarazin N, Tordjman M, Magis M, di Forte-Poisson M A, Knez M, Delos E, Gaquiere C, Delage S L and Kohn E 2007 Electron. Lett. 43 691
|
[9] |
Kuzmik J, Pozzovivo G, Abermann S, Carlin J, Gonschorek M, Feltin E, Grandjean N, Bertagnolli E, Strasser G and Pogany D 2008 IEEE Trans. Electron Devices 55 937
|
[10] |
Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Device Lett. 25 161
|
[11] |
Guo L L, Feng Q, Hao Y and Yang Y 2007 Acta Phys. Sin. 56 2895 (in Chinese)
|
[12] |
Guo L L, Feng Q, Ma X B, Hao Y and Liu J 2007 Acta Phys. Sin. 56 2900 (in Chinese)
|
[13] |
Wei W, Hao Y, Feng Q, Zhang J C and Zhang J F 2008 Acta Phys. Sin. 57 2456 (in Chinese)
|
[14] |
Sun H, Alt A R, Benedickter H, Bolognesi C R, Feltin E, Carlin J F, Gonschorek M, Grandjean N, Maier T and Quay R 2009 IEEE Electron Device Lett. 30 796
|
[15] |
Wang H, Chung J W, Gao X, Guo S and Palacios T 2010 Phys. Status Solidi C 1
|
[16] |
Ye P D, Yang B, Ng K K, Bude J, Wilk G D, Halder S and Hwang J C M 2005 Appl. Phys. Lett. 86 063501
|
[17] |
Liu C, Chor E F and Tan L S 2006 Appl. Phys. Lett. 88 173504
|
[18] |
Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L and Wang H 2011 Acta Phys. Sin. 60 to be published (in Chinese) endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|