Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 026302    DOI: 10.1088/1674-1056/19/2/026302
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Discrete breathers in a model with Morse potentials

Lü Bin-Bin(吕彬彬), Deng Yan-Ping(邓艳平), and Tian Qiang(田强)
Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  Under harmonic approximation, this paper discusses the linear dispersion relation of the one-dimensional chain. The existence and evolution of discrete breathers in a general one-dimensional chain are analysed for two particular examples of soft (Morse) and hard (quartic) on-site potentials. The existence of discrete breathers in one-dimensional and two-dimensional Morse lattices is proved by using rotating wave approximation, local anharmonic approximation and a numerical method. The localization and amplitude of discrete breathers in the two-dimensional Morse lattice with on-site harmonic potentials correlate closely to the Morse parameter a and the on-site parameter $\kappa$.
Keywords:  discrete breathers      Morse lattice      square lattice      on-site potential  
Received:  09 April 2009      Revised:  02 June 2009      Accepted manuscript online: 
PACS:  63.20.Pw (Localized modes)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  63.20.Ry (Anharmonic lattice modes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1057411), and the Foundation for Researching Group by Beijing Normal University.

Cite this article: 

Lü Bin-Bin(吕彬彬), Deng Yan-Ping(邓艳平), and Tian Qiang(田强) Discrete breathers in a model with Morse potentials 2010 Chin. Phys. B 19 026302

[1] Sievers A J and Takeno S 1988 Phys. Rev. Lett. 61 970
[2] Page J B 1991 Phys. Rev. B 41 7835
[3] Mackay R S and Aubry S 1994 Nonlinearity 7 1623
[4] Aubry S 1997 PhysicaD} 10 3 201
[5] Flach S and Willis C R 1998 Phys. Rep. 295 181
[6] Zhou Q, Lü B B and Tian Q 2009 Acta Phys. Sin. 58 411 (in Chinese)
[7] Eisenberg H S, Silberberg Y, Morandotti R, Boyd A R and Aitchison JS 1998 Phys. Rev. Lett. 81 3383
[8] Fleischer J W, Segev M, Efredmidis N K and Christodoulides D N 2003 Nature 4 22 147
[9] Trias E, Mazo J J and Orlando T P 2000 Phys. Rev. Lett. 84 741
[10] Binder P, Abraimov D, Ustinov A V, Flach S and Zolotaryuk Y 2000 Phys. Rev. Lett. 84 745
[11] Sato M, Hubbard B E, Sievers A J, Ilic B, Czaplewski D Aand Craighead H G 2003 Phys. Rev. Lett. 90 044102
[12] Sato M, Hubbard B E, Sievers A J, Ilic B and Craighead H G 2004 Europhys. Lett. 66 318
[13] Lü B B, Zhou Q and Tian Q 2008 Journal ofBeijing Normal University(Natural Science) 44 476 (inChinese)
[14] Lü B B and Tian Q 2008 Journal of BeijingNormal University(Natural Science) 44 581 (in Chinese)
[15] Lü B B and Tian Q 2009 Chin. Phys. B 18 4393
[16] Burlakov V M, Kiselev S A and Pyrkov V N 1990 Phys. Rev. B 42 4921
[17] Flach S, Kladko K and Takeno S 1997 Phys. Rev. Lett. 79 4838
[18] Tamga J M, Remoissenet M and Pouget J 1995 Phys. Rev. Lett. 75357
[19] Sandusky K W and Page J B 1994 Phys. Rev. B 50 866
[20] Dauxois T and Peyrard M 1993 Phys. Rev. Lett. 70 3935
[1] Dynamical energy equipartition of the Toda model with additional on-site potentials
Zhenjun Zhang(张振俊), Chunmei Tang(唐春梅), Jing Kang(康静), Peiqing Tong(童培庆). Chin. Phys. B, 2017, 26(10): 100505.
[2] Spin-correlation function of the fully frustrated Ising model and ± J Ising spin glass on the square lattice
M Y Ali, J Poulter. Chin. Phys. B, 2013, 22(6): 067502.
[3] The effects of cubic potentials on discrete breathers in a mixed Klein-Gordon /Fermi-Pasta-Ulam chain
Zhou Qian(周倩), LÜ Bin-Bin(吕彬彬), and Tian Qiang(田强). Chin. Phys. B, 2010, 19(6): 066301.
[4] Discrete gap breathers in a two-dimensional diatomic face-centered square lattice
ü Bin-Bin(吕彬彬) and Tian Qiang(田强). Chin. Phys. B, 2009, 18(10): 4393-4406.
[5] On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential
Xu Quan(徐权) and Tian Qiang(田强). Chin. Phys. B, 2009, 18(1): 259-268.
[6] Two-vibron bound states in the $\beta$--Fermi--Pasta--Ulam model
Hu Xin-Guang (胡新广), Tang Yi (唐 翌). Chin. Phys. B, 2008, 17(11): 4268-4272.
No Suggested Reading articles found!