Please wait a minute...
Chinese Physics, 2001, Vol. 10(4): 307-309    DOI: 10.1088/1009-1963/10/4/308
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

STEADY SOLUTIONS OF THE OPTICAL SOLITON EQUATION WITH A NONLINEAR RESPONSE DELAY TERM

Lin Chang (林长), Zhang Xiu-Lian (张秀莲)
Department of Physics, Northwest Normal University, Lanzhou 730070, China
Abstract  The exact solution of the optical soliton equation with a nonlinear response delay term has been obtained by using the method of separating variables. The new type of optical solitary wave solution, which is quite different from the bright and dark soliton solutions, has been found for a special case.
Keywords:  optical soliton equation      solitary wave solution      method of separating variables  
Received:  11 April 2000      Revised:  10 December 2000      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the Natural Science Foundation of Gansu Province, China (Grant No. Z2-96-018).

Cite this article: 

Lin Chang (林长), Zhang Xiu-Lian (张秀莲) STEADY SOLUTIONS OF THE OPTICAL SOLITON EQUATION WITH A NONLINEAR RESPONSE DELAY TERM 2001 Chinese Physics 10 307

[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[3] A novel (G’/G)-expansion method and its application to the Boussinesq equation
Md. Nur Alam, Md. Ali Akbar, Syed Tauseef Mohyud-Din. Chin. Phys. B, 2014, 23(2): 020203.
[4] Nonautonomous solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients
He Jun-Rong (何俊荣), Li Hua-Mei (李画眉). Chin. Phys. B, 2013, 22(4): 040310.
[5] Folded localized excitations in the (2+1)-dimensional modified dispersive water-wave system
Lei Yan (雷燕), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2013, 22(1): 010506.
[6] Chaotic solutions of (2+1)-dimensional Broek–Kaup equation with variable coefficients
Yang Zheng(杨征), Ma Song-Hua(马松华), and Fang Jian-Ping(方建平) . Chin. Phys. B, 2011, 20(4): 040301.
[7] Combined periodic wave and solitary wave solutions in two-component Bose–Einstein condensates
Yao Shu-Fang (姚淑芳), Li Qiu-Yan(李秋艳), and Li Zai-Dong(李再东) . Chin. Phys. B, 2011, 20(11): 110307.
[8] Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method
Zhang Huan-Ping(张焕萍), Li Biao(李彪), and Chen Yong(陈勇). Chin. Phys. B, 2010, 19(6): 060302.
[9] Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations
Wu Xiao-Fei(吴晓飞), Zhu Jia-Min(朱加民), and Ma Zheng-Yi(马正义). Chin. Phys. B, 2007, 16(8): 2159-2166.
[10] A kind of extended Korteweg--de Vries equation and solitary wave solutions for interfacial waves in a two-fluid system
Yang Hong-Li(杨红丽), Song Jin-Bao(宋金宝), Yang Lian-Gui(杨联贵), and Liu Yong-Jun(刘永军). Chin. Phys. B, 2007, 16(12): 3589-3594.
[11] New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov--Kuzentsov equation
Taogetusang (套格图桑), Sirendaoreji. Chin. Phys. B, 2006, 15(6): 1143-1148.
[12] A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice
Zha Qi-Lao (扎其劳), Sirendaoreji (斯仁道尔吉). Chin. Phys. B, 2006, 15(3): 475-477.
[13] Applications of F-expansion method to the coupled KdV system
Li Bao-An (李保安), Wang Ming-Liang (王明亮). Chin. Phys. B, 2005, 14(9): 1698-1706.
[14] New expansion algorithm of three Riccati equations and its applications in nonlinear mathematical physics equations
Zhi Hong-Yan (智红燕), Zhao Xue-Qin (赵雪芹), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2005, 14(7): 1296-1302.
[15] A unified approach in seeking the solitary wave solutions to sine-Gordon type equations
Xie Yuan-Xi (谢元喜), Tang Jia-Shi (唐驾时). Chin. Phys. B, 2005, 14(7): 1303-1306.
No Suggested Reading articles found!