Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068103    DOI: 10.1088/1674-1056/adce9f
RAPID COMMUNICATION Prev   Next  

Two-step growth of 4-inch multilayer MoS2 wafers

Yang-Kun Zhang(张养坤)1,2, Yu-Chen Wang(王雨辰)1,2, Wei Yang(杨威)1,2, Dong-Xia Shi(时东霞)1,2,3, Luo-Jun Du(杜罗军)1,2,†, and Guang-Yu Zhang(张广宇)1,2,3,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Molybdenum disulfide (MoS2) is an emerging two-dimensional (2D) semiconductor and has great potential for high-end applications beyond the traditional silicon-based electronics. Compared to the monolayers, multilayer MoS2 has improved electron mobility and current density, and therefore provides a more promising platform in terms of thin-film transistors, flexible electronic devices, etc. However, the synthesis of large-area, high-quality multilayer MoS2 films with controlled layer number remains a challenge. Here, we develop a two-step oxygen-assisted chemical vapor deposition (OA-CVD) methodology for the synthesis of 4-inch MoS2 films from monolayer to trilayer on sapphire substrates. The influence of critical growth parameters on the growth of multilayer MoS2 is systematically explored, such as the evaporation temperature of MoO3 and the flow rate of O2. Flexible field-effect transistor (FET) devices fabricated from bilayer/trilayer MoS2 show substantial improvements in mobility compared with flexible FETs based on monolayer films.
Keywords:  two-step growth      oxygen-assisted chemical vapor deposition      multilayer MoS2      flexible field-effect transistor  
Received:  07 March 2025      Revised:  18 April 2025      Accepted manuscript online:  21 April 2025
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  07.79.Cz (Scanning tunneling microscopes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1202900), the National Natural Science Foundation of China (Grant Nos. 12422402, 61888102, 12274447, and 62204166), Chinese Academy of Sciences Strategic Priority Research Program (Grant No. XDB067020302), and Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030002).
Corresponding Authors:  Luo-Jun Du, Guang-Yu Zhang     E-mail:  luojun.du@iphy.ac.cn;gyzhang@iphy.ac.cn

Cite this article: 

Yang-Kun Zhang(张养坤), Yu-Chen Wang(王雨辰), Wei Yang(杨威), Dong-Xia Shi(时东霞), Luo-Jun Du(杜罗军), and Guang-Yu Zhang(张广宇) Two-step growth of 4-inch multilayer MoS2 wafers 2025 Chin. Phys. B 34 068103

[1] Mitchell Waldrop M 2016 Nature 530 144
[2] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[4] Li N,Wang Q, Shen C,Wei Z, Yu H, Zhao J, Lu X,Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D and Zhang G 2020 Nat. Electron. 3 711
[5] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[6] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703
[7] Chen J, Zhao X, Grinblat G, Chen Z, Tan S J R, Fu W, Ding Z, Abdelwahab I, Li Y, Geng D, Liu Y, Leng K, Liu B, Liu W, Tang W, Maier S A, Pennycook S J and Loh K P 2018 Adv. Mater. 30 1704674
[8] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[9] Zhang S, Pei Y, Hu S,Wu N, Chen D Q, Lian C and Meng S 2023 Chin. Phys. Lett. 40 077502
[10] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S and Li L J 2012 Nano Lett. 12 1538
[11] Xia Y, Chen X, Wei J, Wang S, Chen S, Wu S, Ji M, Sun Z, Xu Z, Bao W and Zhou P 2023 Nat. Mater. 22 1324
[12] Xue G, Sui X, Yin P, Zhou Z, Li X, Cheng Y, Guo Q, Zhang S, Wen Y, Zuo Y, Zhao C,Wu M, Gao P, Li Q, He J,Wang E, Zhang G, Liu C and Liu K 2023 Sci. Bull. 68 1514
[13] Li L, Wang Q, Wu F, Xu Q, Tian J, Huang Z, Wang Q, Zhao X, Zhang Q, Fan Q, Li X, Peng Y, Zhang Y, Ji K, Zhi A, Sun H, Zhu M, Zhu J, Lu N, Lu Y, Wang S, Bai X, Xu Y, Yang W, Li N, Shi D, Xian L, Liu K, Du L and Zhang G 2024 Nat. Commun. 15 1825
[14] Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y,Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D and Zhang G 2020 Nano Lett. 20 7193
[15] Xu H, Zhang H, Guo Z, Shan Y, Wu S, Wang J, Hu W, Liu H, Sun Z, Luo C, Wu X, Xu Z, Zhang D W, Bao W and Zhou P 2018 Small 14 1803465
[16] Wei Z, Tang J, Li X, Chi Z, Wang Y, Wang Q, Han B, Li N, Huang B, Li J, Yu H, Yuan J, Chen H, Sun J, Chen L, Wu K, Gao P, He C, Yang W, Shi D, Yang R and Zhang G 2021 Small Methods 5 2100091
[17] Zhu J, Park J H, Vitale S A, Ge W, Jung G S, Wang J, Mohamed M, Zhang T, Ashok M, Xue M, Zheng X, Wang Z, Hansryd J, Chandrakasan A P, Kong J and Palacios T 2023 Nat. Nanotechnol. 18 456
[18] Hoang A T, Hu L, Kim B J, Van T T N, Park K D, Jeong Y, Lee K, Ji S, Hong J, Katiyar A K, Shong B, Kim K, Im S, Chung W J and Ahn J H 2023 Nat. Nanotechnol. 18 1439
[19] Wang R, Koch N, Martin J and Sadofev S 2023 Physica Status Solidi - Rapid Research Letters 17 2200476
[20] Jeon W, Cho Y, Jo S, Ahn J H and Jeong S J 2017 Adv. Mater. 29 1703031
[21] Pyeon J J, Kim S H, Jeong D S, Baek S H, Kang C Y, Kim J S and Kim S K 2016 Nanoscale 8 10792
[22] Agarwal T, Yakimets D, Raghavan P, Radu I, Thean A, Heyns M and Dehaene W 2015 IEEE Trans. Electron Devices 62 4051
[23] Szabó Á, Rhyner R and Luisier M 2015 Phys. Rev. B 92 035435
[24] Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y and Duan X 2014 Nat. Commun. 5 5143
[25] Li S L, Wakabayashi K, Xu Y, Nakaharai S, Komatsu K, Li W W, Lin Y F, Aparecido-Ferreira A and Tsukagoshi K 2013 Nano Lett. 13 3546
[26] Zheng J, Yan X, Lu Z, Qiu H, Xu G, Zhou X, Wang P, Pan X, Liu K and Jiao L 2017 Adv. Mater. 29 1604540
[27] Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W and Kim K 2012 Nat. Commun. 3 1011
[28] Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z and Ostrikov K Ken 2019 Nat. Commun. 10 598
[29] Liu L, Li T, Ma L, Li W, Gao S, Sun W, Dong R, Zou X, Fan D, Shao L, Gu C, Dai N, Yu Z, Chen X, Tu X, Nie Y, Wang P, Wang J, Shi Y and Wang X 2022 Nature 605 69
[30] Wang Q, Tang J, Li X, Tian J, Liang J, Li N, Ji D, Xian L, Guo Y, Li L, Zhang Q, Chu Y, Wei Z, Zhao Y, Du L, Yu H, Bai X, Gu L, Liu K, Yang W, Yang R, Shi D and Zhang G 2022 Natl. Sci. Rev. 9 nwac077
[31] Zhang L, Dong J and Ding F 2021 Chem. Rev. 121 6321
[32] Guo Y, Wang Z, Zhang L, Shen X and Liu F 2016 Phys. Chem. Chem. Phys. 18 14449
[33] Bauer’ E and Van Der Merwe J H 1986 Phys. Rev. B 33 3657
[34] Kim K S, Lee D, Chang C S, Seo S, Hu Y, Cha S, Kim H, Shin J, Lee J H, Lee S, Kim J S, Kim K H, Suh J M, Meng Y, Park B I, Lee J H, Park H S, Kum H S, Jo M H, Yeom G Y, Cho K, Park J H, Bae S H and Kim J 2023 Nature 614 88
[35] Li X, Qin B, Wang Y, Xi Y, Huang Z, Zhao M, Peng Y, Chen Z, Pan Z, Zhu J, Cui C, Yang R, Yang W, Meng S, Shi D, Bai X, Liu C, Li N, Tang J, Liu K, Du L and Zhang G 2024 Nat. Commun. 15 10921
[36] Chen W, Zhao J, Zhang J, Gu L, Yang Z, Li X, Yu H, Zhu X, Yang R, Shi D, Lin X, Guo J, Bai X and Zhang G 2015 J. Am. Chem. Soc. 137 15632
[1] High-density and narrow size-distribution InAs quantum dots formed by a modified two-step growth
Huang She-Song(黄社松), Niu Zhi-Chuan(牛智川), Zhan Feng(詹锋), Ni Hai-Qiao(倪海桥), Zhao Huan(赵欢), Wu Dong-Hai(吴东海), and Sun Zheng(孙征). Chin. Phys. B, 2008, 17(1): 323-327.
No Suggested Reading articles found!