中国物理B ›› 2018, Vol. 27 ›› Issue (4): 47305-047305.doi: 10.1088/1674-1056/27/4/047305
• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇 下一篇
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃)
Wei Mao(毛维)1, Hai-Yong Wang(王海永)1, Peng-Hao Shi(石朋毫)1, Xiao-Fei Wang(王晓飞)2, Ming Du(杜鸣)1, Xue-Feng Zheng(郑雪峰)1, Chong Wang(王冲)1, Xiao-Hua Ma(马晓华)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1
摘要: A novel GaN-based vertical heterostructure field effect transistor (HFET) with nonuniform doping superjunctions (non-SJ HFET) is proposed and studied by Silvaco-ATLAS, for minimizing the specific on-resistance (RonA) at no expense of breakdown voltage (BV). The feature of non-SJ HFET lies in the nonuniform doping concentration from top to bottom in the n-and p-pillars, which is different from that of the conventional GaN-based vertical HFET with uniform doping superjunctions (un-SJ HFET). A physically intrinsic mechanism for the nonuniform doping superjunction (non-SJ) to further reduce RonA at no expense of BV is investigated and revealed in detail. The design, related to the structure parameters of non-SJ, is optimized to minimize the RonA on the basis of the same BV as that of un-SJ HFET. Optimized simulation results show that the reduction in RonA depends on the doping concentrations and thickness values of the light and heavy doping parts in non-SJ. The maximum reduction of more than 51% in RonA could be achieved with a BV of 1890 V. These results could demonstrate the superiority of non-SJ HFET in minimizing RonA and provide a useful reference for further developing the GaN-based vertical HFETs.
中图分类号: (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)